ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (217)
  • CITATION GEO-LEO  (217)
Collection
  • Other Sources  (217)
Language
  • 1
    Publication Date: 2023-06-08
    Description: Previous paleolimnological studies demonstrated that the sediments of Garba Guracha, situated at 3950 m asl in the afro-alpine zone of the Bale Mountains of Ethiopia, provide a complete Late Glacial and Holocene paleoclimate and environmental archive. We revisited Garba Guracha in order to retrieve new sediment cores and to apply new environmental proxies, e.g. charcoal, diatoms, biomarkers, and stable isotopes. Our chronology is established using 210Pb dating and radiocarbon dating of bulk sedimentary organic matter, bulk n-alkanes, and charcoal. Although bedrock was not reached during coring, basal ages confirm that sedimentation started at the earliest ~ 16 cal kyr BP. The absence of a systematic age offset for the n-alkanes suggests that “pre-aging” is not a prominent issue in this lake, which is characterised by a very small afro-alpine catchment. X-ray fluorescence scans and total organic carbon contents show a prominent transition from minerogenic to organic-rich sediments around 11 cal kyr BP coinciding with the Holocene onset. While an unambiguous terrestrial versus aquatic source identification seems challenging, the n-alkane-based Paq proxy, TOC/N ratios, δ13C values, and the sugar biomarker patterns suggest a predominantly autochthonous organic matter source. Supraregional climate events, such as the African Humid Period, the Younger Dryas (YD), a 6.5 cal kyr BP short drying event, and the 4.2 cal kyr BP transition to overall drier climate are recorded in our archive. The Garba Guracha record suggests that northern hemisphere forcings played a role in the Eastern African highland paleoclimate.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:551 ; Paleolimnology ; Afro-alpine ; Radiocarbon dating ; XRF scanning ; Sedimentation rate ; Biomarkers
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-07-01
    Description: (Ultra) high‐pressure (HP) rocks can be exhumed rapidly by subduction reversal or divergent plate motion. Recent studies show that subduction reversal can in particular occur in a divergent double subduction zone when the slab pull of one slab exceeds that of the other, shorter one, which then experiences a net upward pull. This recent hypothesis, first proposed for Triassic HP‐rocks exposed in the central Qiangtang mélange belt in central Tibet, can explain the exhumation of (ultra) HP rocks through upward slab movement. However, this model lacks the support of kinematic evidence. In this study, based on the recognition of multiple deformational phases, we analyze the kinematics of the HP‐bearing mélange in central Qiangtang. Based on new 40Ar‐39Ar geochronology data and those collected from the literature, we present a temporal framework for the new observations. We recognize a switch in sense of shear between the prograde (D1) and exhumation (D2‐3) paths. The change of shear sense reflects the reversal from downward to upward movement of the oceanic slab below. Early D2 represents the early exhumation stage that caused retrograde metamorphism from eclogite to blueschist facies. No magmatism occurred during this period. Continued exhumation from blueschist facies to greenschist facies resulted in D2‐D3 structures. Voluminous igneous activity occurred during this stage. We suggest that subduction reversal in a divergent double subduction zone can best explain the kinematic evolution and temporal framework above. This exhumation model may provide a new perspective on the exhumation mechanism for other HP rocks around the world.
    Description: Key Points: Central Qiangtang HP‐bearing mélange formed by short‐lived southward subduction in a divergent double subduction setting. Progressive inversed shearing exhumed HP rocks. Subduction reversal in a divergent double subduction zone can exhume HP rocks through direct slab movement.
    Description: China Geological Survey (CGS) http://dx.doi.org/10.13039/501100004613
    Keywords: 551.8 ; Tibetan Plateau ; South Qiangtang Terrane ; subduction reversal ; divergent double subduction zone ; exhumation ; high‐pressure rocks
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-06-16
    Description: Secondary organic aerosol (SOA) forms a major part of the tropospheric submicron particle mass. Still, the exact formation mechanisms of SOA have remained elusive. It is now admitted that highly oxygenated organic molecules (HOMs) can contribute to a large fraction of SOA formation. In this study, we performed a set of chamber experiments to investigate the SOA formation, and the HOMs uptake and processing directly formed by OH‐radical initiated oxidation of α‐pinene under two different aerosol seed conditions. Numerous HOM compounds were identified using advanced online and offline analytical techniques, and grouped into four classes according to their different uptake behaviors. For the first time, individual HOMs uptake coefficients ranging from 1.1 × 10−2 to 1.5 × 10−1 were experimentally determined and analyzed using a resistance model which considers uptake limitations by individual gas‐ and/or particle‐phase processes. This study demonstrates that the uptake coefficients of HOMs strongly depend on their molar mass and their respective O/C ratio. Results show that aerosol seed composition and phase state affect the initial uptake of HOMs. Furthermore, the study demonstrates that the acidity and/or different seed phase‐state can significantly enhance the subsequent uptake through occurring acidity‐driven reactions reflected in a reactive behavior, particularly under (NH4)HSO4 seed conditions, promoting up to 3 times a higher SOA mass formation including the formation of highly oxidized organosulfates (HOOS). Overall, the present study implies that HOMs and their subsequent chemical processing can play an important role in both the early growth of newly formed particles and SOA formation when particle acidity is high.
    Description: Plain Language Summary: Tropospheric organic aerosol (OA) compounds represent a large part of submicron particulate matter. A big fraction of OA is formed from oxidation of emitted gaseous volatile organic compounds such as α‐pinene. Oxidation products are less‐volatile compounds that tend to condense on aerosol particles. Recently identified “highly oxygenated organic molecules” (HOMs) are formed by gas‐phase autoxidation processes and exhibit very low vapor pressures. Therefore, HOMs are expected to efficiently contribute to secondary organic aerosol (SOA). However, up to now, SOA formation potential of HOMs is still not well described because of lacking experimental investigations and analysis. Consequently, this study aims to investigate the mentioned HOMs partitioning and subsequent SOA formation from the OH‐radical initiated oxidation of α‐pinene under both Na2SO4 and (NH4)HSO4 aerosol seed conditions through complex chamber experiments. For the first time, individual HOMs uptake coefficients were determined experimentally. Further investigations demonstrated that the uptake coefficients of HOMs strongly depend on their molar mass, as well as on their respective O/C ratio. Finally, the results show that aerosol acidity and/or phase state significantly enhances the HOMs uptake and promotes up to three times higher SOA mass formation under (NH4)HSO4 seed conditions compared to that under neutral seed conditions.
    Description: Key Points: Uptake coefficients of numerous highly oxygenated organic molecules (HOMs) were experimentally determined for the first time. HOMs uptake and secondary organic aerosol formation were significantly enhanced by acidic (NH4)HSO4 seed. Highly oxidized organosulfates formation were observed under acidic (NH4)HSO4 seed conditions.
    Description: European Commission http://dx.doi.org/10.13039/501100000780
    Description: National Natural Science Foundation of China http://dx.doi.org/10.13039/501100001809
    Description: https://doi.org/10.25326/FJNF-7224
    Description: https://doi.org/10.25326/KC8N-DY53
    Keywords: ddc:551 ; aerosol study ; highly oxygenated organic molecules
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-12-16
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Three volcanic arcs have been the source of New Zealand's volcanic activity since the Neogene: Northland arc, Coromandel Volcanic Zone (CVZ) and Taupō Volcanic Zone (TVZ). The eruption chronology for the Quaternary, sourced by the TVZ, is well studied and established, whereas the volcanic evolution of the precursor arc systems, like the CVZ (central activity c. 18 to 2 Ma), is poorly known due to limited accessibility to, or identification of, onshore volcanic deposits and their sources. Here, we investigate the marine tephra record of the Neogene, mostly sourced by the CVZ, of cores from IODP Exp. 375 (Sites U1520 and U1526), ODP Leg 181 (Sites 1123, 1124 and 1125), IODP Leg 329 (Site U1371) and DSDP Leg 90 (Site 594) offshore of New Zealand. In total, we identify 306 primary tephra layers in the marine sediments. Multi‐approach age models (e.g. biostratigraphy, zircon ages) are used in combination with geochemical fingerprinting (major and trace element compositions) and the stratigraphic context of each marine tephra layer to establish 168 tie‐lines between marine tephra layers from different holes and sites. Following this approach, we identify 208 explosive volcanic events in the Neogene between c. 17.5 and 2.6 Ma. This is the first comprehensive study of New Zealand's Neogene explosive volcanism established from tephrochronostratigraphic studies, which reveals continuous volcanic activity between c. 12 and 2.6 Ma with an abrupt compositional change at c. 4.5 Ma, potentially associated with the transition from CVZ to TVZ.〈/p〉
    Description: Plain Language Summary: Since 18 Ma, volcanic activity in New Zealand is dominantly sourced by the Coromandel Volcanic Zone (CVZ). Most caldera systems of the CVZ identified so far are located on Coromandel Peninsula in the NW of North Island, New Zealand, but studies of the CVZ are rare mainly due to the limited accessibility of its volcanic deposits, as well as missing stratigraphic continuity between different outcrops and the volcanic source. Here, our ocean drilling tephra record—mainly volcanic ash from explosive eruptions, distributed and falling out over the ocean—has a great potential to reveal the eruption history of the CVZ because it is preserved in marine sediments in a nearly undisturbed stratigraphic context. We analyzed ∼400 marine tephra layers from multiple ocean sediment cores off the coast of New Zealand for their geochemical glass compositions and identified 306 as largely undisturbed ash deposits. These primary ash deposits correspond to a total number of 208 Neogene volcanic events. Different dating methods result in a continuous marine tephra record for the last 12 Ma, equivalent to a unique and most complete eruptive history for the CVZ. This enables us to further unravel changes in the composition of the associated magmas with time.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉New Zealand's Neogene explosive volcanism based on the marine tephra record〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Geochemical fingerprinting of marine tephra layers across the study area to establish volcanic events〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Insights into geochemical variations with time, repose times and spatiotemporal distribution〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: DFG
    Description: Marsden project
    Description: https://doi.org/10.14379/iodp.proc.372B375.210.2023
    Keywords: ddc:551 ; marine tephrochronostratigraphy ; geochemical fingerprinting ; correlations of marine tephras between individual drill sites ; IODP ; ODP and DSDP drill sites ; neogene eruption record of New Zealand
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-01-26
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Version 5 (v05) of the thermospheric wind data from the Michelson Interferometer for Global High‐resolution Thermospheric Imaging (MIGHTI) instrument on the Ionospheric Connection Explorer (ICON) mission has been recently released, which largely avoids local‐time dependent artificial baseline drifts that are found in previous versions of the ICON/MIGHTI wind data. This paper describes monthly climatologies of zonal‐mean winds and tides based on the v05 ICON/MIGHTI data under geomagnetically quiet conditions (Hp30 〈 3o) during April 2020–March 2022. Green‐line winds in the lower thermosphere (90–110 km) and red‐line winds in the middle thermosphere (200–300 km) are analyzed, as these data cover both daytime and nighttime. The latitude and height structures of zonal‐mean winds and tides are presented for each month, and the results are compared with the widely used empirical model, Horizontal Wind Model 2014 (HWM14). The ICON/MIGHTI and HWM14 results are in general agreement, providing a validation of the v05 ICON/MIGHTI data. The agreement is especially good for the zonal‐mean winds. Amplitudes of lower thermospheric tides from ICON/MIGHTI tend to be larger than those from HWM14 as well as from an empirical model, Climatological Tidal Model of the Thermosphere (CTMT). This could be due to the influence of interannual variability of the tides. The amplitude structure of lower thermospheric tides in HWM14 does not match those from ICON/MIGHTI and CTMT in some months. Also, HWM14 underestimates the meridional‐wind amplitude of the migrating diurnal tide in the middle thermosphere. These results highlight the need for improved tidal representation in HWM14.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉Monthly climatologies of zonal‐mean winds and tides at 90–110 km and 200–300 km are determined using v05 Ionospheric Connection Explorer/Michelson Interferometer for Global High‐resolution Thermospheric Imaging (ICON/MIGHTI) observations〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉ICON/MIGHTI and Horizontal Wind Model 2014 results are in general agreement, providing a validation of the Version 5 ICON/MIGHTI data〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉The agreement is especially good for the zonal‐mean winds, while some discrepancies are found in tidal amplitudes〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: NASA
    Description: https://icon.ssl.berkeley.edu/Data
    Description: https://kp.gfz-potsdam.de/en/hp30-hp60/data
    Description: https://doi.org/10.5880/Hpo.0002
    Description: https://spaceweather.gc.ca/forecast-prevision/solar-solaire/solarflux/sx-5-mavg-en.php
    Description: https://globaldynamics.sites.clemson.edu/articles/ctmt.html
    Description: https://doi.org/10.5281/zenodo.5541913
    Keywords: ddc:551.5 ; thermosphere ; zonal‐mean winds ; tides ; ionospheric connection explorer (ICON) ; MIGHTI ; HWM14
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-04-03
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉On 15 January 2022, the Hunga volcano produced a massive explosion that generated perturbations in the entire atmosphere. Nonetheless, signatures in the mesosphere and lower thermosphere (MLT) have been challenging to identify. We report MLT horizontal wind perturbations using three multistatic specular meteor radars on the west side of South America (spanning more than 3,000 km). The most notorious signal is an exceptional solitary wave with a large vertical wavelength observed around 18 UT at all three sites, with an amplitude of ∼50 m/s mainly in the westward direction. Using a customized analysis, the wave is characterized as traveling at ∼200 m/s, with a period of ∼2 hr and a horizontal wavelength of ∼1,440 km in the longitudinal direction, away from the source. The perturbation is consistent with an 〈italic〉L〈/italic〉〈sub〉1〈/sub〉 Lamb wave mode. The signal's timing coincides with the arrival time of the tsunami triggered by the eruption.〈/p〉
    Description: Plain Language Summary: The eruption of the Hunga volcano in January 2022 had a widespread impact on the atmosphere, affecting various layers. We describe a perturbation in horizontal winds caused by the event, which was observed over the west coast of South America by three different meteor radar systems separated by more than 3,000 km between them. The perturbation behaved similarly in the altitude range of 80–100 km, and the wave parameters observed were consistent with high‐order Lamb wave solutions from simulations carried out using the Whole Atmosphere Community Climate Model with thermosphere/ionosphere extension. This finding complements other studies that have explored the impacts of the eruption on different atmospheric levels. Overall, this study provides valuable insights into the complex and far‐reaching effects of volcanic eruptions on the atmosphere.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉Hunga eruption generated extreme horizontal wind perturbations at 80–100 km of altitude over South America〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉The signal was detected almost simultaneously by three multistatic meteor radar systems spanning more than 3,000 km〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉The perturbation had a period of ∼2 hr, a horizontal phase velocity of ∼200 m/s, and a horizontal wavelength of ∼1,440 km〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: Leibniz SAW project FORMOSA
    Description: https://doi.org/10.22000/956
    Keywords: ddc:551.5 ; South America ; 2022 Hunga Eruption ; mesosphere ; lower thermosphere ; horizontal wind perturbations
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-07-21
    Description: Through the release of groundwater, most mountain rivers run year‐round despite their small catchments and sporadic precipitation. This makes mountain ranges important sources of reliable freshwater for downstream populations in many parts of the world. However, due to a lack of ground instrumentation, little is known about groundwater dynamics in mountainous landscapes. Recent research has shown that the amount of moisture trapped in the soil and weathered rocks in the vadose zone can significantly buffer groundwater recharge and runoff but the wider recognition of this effect on major mountain systems has not been yet established. In this study, we test whether the moisture reservoir has an impact on hydrological fluxes in a steep Himalayan catchment during three monsoon seasons. We measured an array of parameters including relative seismic velocity changes from ambient noise correlations. This noninvasive technique allows us to monitor groundwater dynamics in conjunction with classical hydrological measurements. We found that the moisture saturation in the vadose zone controls the onset of groundwater recharge and runoff and therefore determines the annual water availability supplied by monsoon precipitation. We model this dynamic using a surface layer that has a finite storage capacity that controls the connectivity of surface flux to groundwater. The extension of this concept, which is thought to apply widely in flat and undulating landscapes, to steep mountain topography with thin and discontinuous soils underlain by regolith and bedrock has important implications for mountain hydrology.
    Description: Plain Language Summary: The Nepal Himalayas supply essential water resources to a large part of the population of South Asia. Most of this water drains through a mountain groundwater reservoir that is poorly constrained. In steep landscapes, this reservoir is continuously losing water due to gravitational pull. Understanding how the reservoir fills and drains is crucial to the assessment of its sustainability and projection into the future with respect to global climate change. However, the relevant subsurface processes are generally challenging to observe due to limited access to the subsurface, particularly in steep mountain landscapes. We have used seismic ambient noise, ground vibrations continuously recorded by seismometers, to monitor the groundwater dynamics on a spatially integrated scale in a Himalayan valley. We show that the moisture content of a shallow layer controls the transfer of precipitation into the deeper groundwater reservoir during the Indian monsoon seasons. Our study highlights the need to anticipate the effects of changes of land use, soil cover conditions and rainfall regime, due to climate change, to better predict the future of freshwater resources in mountain landscapes.
    Description: Key Points: Passive seismic interferometry reveals detailed insights into subsurface water storage variability in the Nepal Himalayas Vadose zone moisture saturation controls river discharge generation in a steep mountain landscape Freshwater delivery from high mountains is strongly dependent on subsurface conditions, which are rarely considered in these environments
    Description: GFZ HART program
    Keywords: 551.49 ; Himalayas ; mountain hydrology ; seismic noise | subsurface moisture ; summer monsoon ; vadose zone
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-06-26
    Description: The high‐precision X‐ray diffraction setup for work with diamond anvil cells (DACs) in interaction chamber 2 (IC2) of the High Energy Density instrument of the European X‐ray Free‐Electron Laser is described. This includes beamline optics, sample positioning and detector systems located in the multipurpose vacuum chamber. Concepts for pump–probe X‐ray diffraction experiments in the DAC are described and their implementation demonstrated during the First User Community Assisted Commissioning experiment. X‐ray heating and diffraction of Bi under pressure, obtained using 20 fs X‐ray pulses at 17.8 keV and 2.2 MHz repetition, is illustrated through splitting of diffraction peaks, and interpreted employing finite element modeling of the sample chamber in the DAC.
    Description: The high‐precision X‐ray diffraction (XRD) setup for work with diamond anvil cells (DACs) in Interaction Chamber 2 of the High Energy Density (HED) instrument of the European X‐ray Free‐Electron Laser is described. image
    Keywords: 548 ; diamond anvil cells ; X‐ray free‐electron lasers ; high‐precision X‐ray diffraction ; finite element modeling
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-01-14
    Description: Specular meteor radars (SMRs) have significantly contributed to the understanding of wind dynamics in the mesosphere and lower thermosphere (MLT). We present a method to estimate horizontal correlations of vertical vorticity (Qzz) and horizontal divergence (P) in the MLT, using line‐of‐sight multistatic SMRs velocities, that consists of three steps. First, we estimate 2D, zonal, and meridional correlation functions of wind fluctuations (with periods less than 4 hr and vertical wavelengths smaller than 4 km) using the wind field correlation function inversion (WCFI) technique. Then, the WCFI's statistical estimates are converted into longitudinal and transverse components. The conversion relation is obtained by considering the rotation about the vertical direction of two velocity vectors, from an east‐north‐up system to a meteor‐pair‐dependent cylindrical system. Finally, following a procedure previously applied in the upper troposphere and lower stratosphere to airborne wind measurements, the longitudinal and transverse spatial correlations are fitted, from which Qzz, P, and their spectra are directly estimated. The method is applied to a special Spread spectrum Interferometric Multistatic meteor radar Observing Network data set, obtained over northern Germany for seven days in November 2018. The results show that in a quasi‐axisymmetric scenario, P was more than five times larger than Qzz for the horizontal wavelengths range given by ∼50–400 km, indicating a predominance of internal gravity waves over vortical modes of motion as a possible explanation for the MLT mesoscale dynamics during this campaign.
    Description: Key Points: We investigate the horizontal correlation functions of vertical vorticity and horizontal divergence for mesoscale wind fluctuations in the mesosphere and lower thermosphere. 2D zonal and meridional correlation functions and 1D longitudinal and transverse correlation functions as a function of horizontal lags are analyzed. The divergence dominated over the vorticity during November 2018 in northern Germany.
    Description: Leibniz SAW
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: French Ministry of Foreign and European
    Description: https://doi.org/10.22000/536
    Keywords: ddc:551.5 ; MLT ; vorticity ; correlation function ; meteor radar ; mesoscales ; divergence
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-06-21
    Description: Measurements of kinetic energy in vortical and divergent fluctuations in the mesosphere and lower thermosphere can be used to study stratified turbulence (ST) and gravity waves. This can be done using horizontal correlation functions of the fluctuating component of velocity. This study introduces a novel method for estimating these correlation functions using radars that observe Doppler shifts of ionized specular meteor trails. The technique solves the correlation functions directly on a longitudinal‐transverse‐up coordinate system, assuming axial symmetry. This procedure is more efficient and leads to smaller uncertainties than a previous approach. The new technique is applied to a year‐long data set from a multistatic specular meteor radar network in Germany, to study the annual variability of kinetic energy within turbulent fluctuations at 87–93 km of altitude. In monthly averages, the kinetic energy is found to be nearly equipartitioned between vortical and divergent modes. Turbulent fluctuations maximize during the winter months with approximately 25% more energy in these months than at other times. The horizontal correlation functions are in agreement with the inertial subrange of ST, exhibiting a 2/3 power law in the horizontal lag direction, with an outermost scale of ST to be about 380 km. This suggests that horizontal correlation functions could be used to estimate turbulent energy transfer rates.
    Description: Plain Language Summary: Flows exhibit a phenomenon called turbulence, which transfers energy from large scales into smaller scales. This effect is important to quantify the energy budget of the Earth's upper atmosphere. The range of length scales where this phenomenon occurs is called the inertial subrange of turbulence. The classical theory of isotropic turbulence predicts that this energy transfer occurs on length scales smaller than ∼100 m, at 60–110 km altitude. Recent work has shown that horizontal velocity fluctuations can extend the inertial subrange to length scales of up to hundreds of kilometers horizontally. This type of turbulence is called stratified turbulence (ST). So far no comprehensive study has been made to experimentally examine ST in the mesosphere and lower thermosphere (MLT) region on horizontal mesoscales. This study introduces a method for doing so by measuring how the wind fluctuations are correlated as a function of horizontal separation. This is achieved by using meteor radar measurements. The technique is applied to a year‐long data set over Germany. It is found that the MLT wind fluctuations are compatible with ST theory. The introduced method could potentially be used for routinely measuring how kinetic energy flows from large‐scale to small‐scale atmospheric fluctuations.
    Description: Key Points: A more efficient estimator for horizontal correlation functions is introduced. The rotational and divergent correlation functions of mesosphere and lower thermosphere wind fluctuations are found to be balanced at horizontal mesoscales. Horizontal correlations of wind fluctuations follow a 2/3‐power law for horizontal separations of up to 300–400 km.
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: French Ministry of Foreign and European Affairs
    Description: Leibniz SAW project FORMOSA
    Keywords: ddc:551.5 ; mesosphere ; lower thermosphere ; wind fluctuations
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...