ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-12-16
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Three volcanic arcs have been the source of New Zealand's volcanic activity since the Neogene: Northland arc, Coromandel Volcanic Zone (CVZ) and Taupō Volcanic Zone (TVZ). The eruption chronology for the Quaternary, sourced by the TVZ, is well studied and established, whereas the volcanic evolution of the precursor arc systems, like the CVZ (central activity c. 18 to 2 Ma), is poorly known due to limited accessibility to, or identification of, onshore volcanic deposits and their sources. Here, we investigate the marine tephra record of the Neogene, mostly sourced by the CVZ, of cores from IODP Exp. 375 (Sites U1520 and U1526), ODP Leg 181 (Sites 1123, 1124 and 1125), IODP Leg 329 (Site U1371) and DSDP Leg 90 (Site 594) offshore of New Zealand. In total, we identify 306 primary tephra layers in the marine sediments. Multi‐approach age models (e.g. biostratigraphy, zircon ages) are used in combination with geochemical fingerprinting (major and trace element compositions) and the stratigraphic context of each marine tephra layer to establish 168 tie‐lines between marine tephra layers from different holes and sites. Following this approach, we identify 208 explosive volcanic events in the Neogene between c. 17.5 and 2.6 Ma. This is the first comprehensive study of New Zealand's Neogene explosive volcanism established from tephrochronostratigraphic studies, which reveals continuous volcanic activity between c. 12 and 2.6 Ma with an abrupt compositional change at c. 4.5 Ma, potentially associated with the transition from CVZ to TVZ.〈/p〉
    Description: Plain Language Summary: Since 18 Ma, volcanic activity in New Zealand is dominantly sourced by the Coromandel Volcanic Zone (CVZ). Most caldera systems of the CVZ identified so far are located on Coromandel Peninsula in the NW of North Island, New Zealand, but studies of the CVZ are rare mainly due to the limited accessibility of its volcanic deposits, as well as missing stratigraphic continuity between different outcrops and the volcanic source. Here, our ocean drilling tephra record—mainly volcanic ash from explosive eruptions, distributed and falling out over the ocean—has a great potential to reveal the eruption history of the CVZ because it is preserved in marine sediments in a nearly undisturbed stratigraphic context. We analyzed ∼400 marine tephra layers from multiple ocean sediment cores off the coast of New Zealand for their geochemical glass compositions and identified 306 as largely undisturbed ash deposits. These primary ash deposits correspond to a total number of 208 Neogene volcanic events. Different dating methods result in a continuous marine tephra record for the last 12 Ma, equivalent to a unique and most complete eruptive history for the CVZ. This enables us to further unravel changes in the composition of the associated magmas with time.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉New Zealand's Neogene explosive volcanism based on the marine tephra record〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Geochemical fingerprinting of marine tephra layers across the study area to establish volcanic events〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Insights into geochemical variations with time, repose times and spatiotemporal distribution〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: DFG
    Description: Marsden project
    Description: https://doi.org/10.14379/iodp.proc.372B375.210.2023
    Keywords: ddc:551 ; marine tephrochronostratigraphy ; geochemical fingerprinting ; correlations of marine tephras between individual drill sites ; IODP ; ODP and DSDP drill sites ; neogene eruption record of New Zealand
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-07-21
    Description: The Tierra Blanca (TB) eruptive suite comprises the last four major eruptions of Ilopango caldera in El Salvador (≤45 ka), including the youngest Tierra Blanca Joven eruption (TBJ; ∼106 km3): the most voluminous event during the Holocene in Central America. Despite the protracted and productive history of explosive silicic eruptions at Ilopango caldera, many aspects regarding the longevity and the prevailing physicochemical conditions of the underlying magmatic system remain unknown. Zircon 238U‐230Th geochronology of the TB suite (TBJ, TB2, TB3, and TB4) reveals a continuous and overlapping crystallization history among individual eruptions, suggesting persistent melt presence in thermally and compositionally distinct magma reservoirs over the last ca. 80 kyr. The longevity of zircon is in contrast to previously determined crystallization timescales of 〈10 kyr for major mineral phases in TBJ. This dichotomy is explained by a process of rhyolitic melt segregation from a crystal‐rich refractory residue that incorporates zircon, whereas a new generation of major mineral phases crystallized shortly before eruption. Ti‐in‐zircon temperatures and amphibole geothermobarometry suggest that rhyolitic melt was extracted from different storage zones of the magma reservoir as indicated by distinct but synchronous thermochemical zircon histories among the TB suite eruptions. Zircon from TBJ and TB2 suggests magma differentiation within deeper and hotter parts of the reservoir, whereas zircon from TB3 and TB4 instead hints at crystallization in comparatively shallower and cooler domains. The assembly of the voluminous TBJ magma reservoir was also likely enhanced by cannibalization of hydrothermally altered components as suggested by low‐δ18O values in zircon (+4.5 ± 0.3‰).
    Description: Plain Language Summary: The collapse of a volcano edifice into its shallow magma chamber can produce one of the most dangerous single events in nature, known as a caldera‐forming eruption. The TBJ eruption in El Salvador is of this kind and occurred around 1,500 years ago, having a profound impact on Maya societies. Because of this, it is crucial to understand the inner workings of caldera‐forming eruptions to assess volcanic risks and their mitigation. Beneath Ilopango caldera, the micrometer‐sized radioisotopically datable mineral zircon grew within different storage levels of a silica‐rich magma reservoir suggesting continuous melt presence for up to ca. 80,000 years prior to eruption. The time information given by zircon contrasts with that extracted from other, more abundant minerals from the same rocks (〈10,000 years). We explain this time difference between coexisting minerals by the ability of melt to carry along small zircon crystals, whereas coeval, larger, and more abundant minerals are left behind in the partially solidified portion of the magma reservoir. Once the segregated melt coalesced in a shallower and dominantly liquid magma chamber, major minerals resumed crystallization shortly before eruption. In addition, this new magma incorporated parts of older magmatic rocks from preceding volcanic cycles, thus generating even larger magma volumes.
    Description: Key Points: U‐Th zircon ages for the last four explosive eruptions of Ilopango caldera reveal a long‐lived magma reservoir (〉80 kyr). Contrasting residence times for major minerals and zircon suggest extraction of zircon along with evolved melt from crystal residue. Melt extraction from vertically extensive, thermally zoned magma reservoir.
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Keywords: 549 ; 551.701 ; Central America ; Geochemistry ; Oxygen isotopes ; SIMS ; U‐series ; Zircon
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-06-08
    Description: Atmospheric deposition of volcanic ash has recently been recognized as an important nutrient source into the surface ocean. Mount Etna (Italy), one of the world's most active volcanoes, is located in the oligotrophic Mediterranean Sea (MedSea). Despite the active volcanismonMount Etna, the biogeochemical impacts of volcanic ash fallouts on the marine primary productivity (MPP) remain largely unknown. Here we present the results of seawater nutrient release experiments with volcanic ash samples fromMount Etna that have been collected during different eruptive episodes between 2001 and 2007. Our results show that volcanic ash fromMount Etna releases significant amounts of fixed-N (35–855 nmol/g), P (7–970 nmol/g), Si (3–2060 nmol/g), Fe (10–130 nmol/g) and Zn (b21 nmol/g). We further estimated an example representative of ash-fall from Etna based on the case-study focusing on 4–5 November 2002 activity, by using the general relation between the thicknesses of the ash deposits and the ash depositional areas. Etna explosive eruptions can transport volcanic ash as far as 800 km,with ashemissions exceeding the particle flux during dust stormevents (of 10 g/m2 input) as far as 400 km downwind fromthe volcano. Our results emphasize that Etna ash can provide a significant supply of nutrients, which can favor theMPP in the central MedSea.
    Description: Published
    Description: 32-42
    Description: 1.8. Osservazioni di geofisica ambientale
    Description: JCR Journal
    Description: restricted
    Keywords: Oceanic fertilization ; Volcanic ash ; Mount Etna ; Mediterranean Sea ; Phosphate ; Nitrate ; Iron ; 03. Hydrosphere::03.03. Physical::03.03.01. Air/water/earth interactions
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-06-23
    Description: Drilling at Integrated Ocean Drilling Program Site U1381 on the Cocos Ridge offshore Costa Rica recovered 67 primary Miocene (ca. 8 Ma to ca. 16.5 Ma) marine fallout ash layers. Geochemical, volcanological, and geological criteria link these ashes to Plinian eruptions that carried ash to at least 50–450 km from the Galápagos hotspot. These ash layers are the first documentation of highly explosive Miocene Galápagos hotspot volcanism. This volcanism is bimodal with two-thirds of the tephra layers generated by basaltic magmas (glass compositions 〈57 wt% SiO 2 ) and one-third by rhyolitic magmas. The temporal distribution of the tephra layers, inferred from sediment accumulation rates calibrated by 40 Ar/ 39 Ar and biostratigraphic ages, reveals a distinct increase in eruption frequency and hence increased volcanic activity of the Galápagos hotspot after 14 Ma which we interpret in the context of dynamic interaction between the Galápagos plume and spreading ridge.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-05-21
    Description: Large explosive volcanic eruptions inject gases, aerosols, and fine ashes into the stratosphere, potentially influencing climate. Emissions of chlorine (Cl) and bromine (Br) from such large eruptions play an important role for catalytic destruction of ozone in the stratosphere, but hitherto the global effects of simultaneous catastrophic release of volcanic Br and Cl into the stratosphere have not been investigated. The Br release from 14 large explosive eruptions throughout Nicaragua covering an entire subduction zone segment in the past 70 ka was determined with petrologic methods. Melt inclusions in volcanic phenocrysts were analyzed using a new optimized synchrotron–X-ray fluorescence microprobe set-up. Single eruptions produced Br outputs of 4–600 kt, giving an average Br emission of 27 kt per eruption. Using the assumption that 10% of the emitted halogens reach the stratosphere, the average Br and Cl loading to the stratosphere would be 3 ppt and 1500 ppt, respectively, which together would account for 185% of the preindustrial equivalent effective stratospheric Cl loading. We thus conclude that many large tropical volcanic eruptions had and have the potential to substantially deplete ozone on a global scale, eventually forming future ozone holes.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-01-30
    Description: A rigorous detection of Milankovitch periodicities in volcanic output across the Pleistocene-Holocene ice age has remained elusive. We report on a spectral analysis of a large number of well-preserved ash plume deposits recorded in marine sediments along the Pacific Ring of Fire. Our analysis yields a statistically significant detection of a spectral peak at the obliquity period. We propose that this variability in volcanic activity results from crustal stress changes associated with ice age mass redistribution. In particular, increased volcanism lags behind the highest rate of increasing eustatic sea level (decreasing global ice volume) by 4.0 ± 3.6 k.y. and correlates with numerical predictions of stress changes at volcanically active sites. These results support the presence of a causal link between variations in ice age climate, continental stress field, and volcanism.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-05-26
    Description: Plate-boundary fault rupture during the 2004 Sumatra-Andaman subduction earthquake extended closer to the trench than expected, increasing earthquake and tsunami size. International Ocean Discovery Program Expedition 362 sampled incoming sediments offshore northern Sumatra, revealing recent release of fresh water within the deep sediments. Thermal modeling links this freshening to amorphous silica dehydration driven by rapid burial-induced temperature increases in the past 9 million years. Complete dehydration of silicates is expected before plate subduction, contrasting with prevailing models for subduction seismogenesis calling for fluid production during subduction. Shallow slip offshore Sumatra appears driven by diagenetic strengthening of deeply buried fault-forming sediments, contrasting with weakening proposed for the shallow Tohoku-Oki 2011 rupture, but our results are applicable to other thickly sedimented subduction zones including those with limited earthquake records.
    Keywords: Geochemistry, Geophysics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-01-01
    Description: Provenance studies of widely distributed tephras, integrated within a well-defined temporal framework, are important to deduce systematic changes in the source, scale, distribution, and changes in regional explosive volcanism. Here, we establish a robust tephrochronostratigraphy for a total of 157 marine tephra layers collected during IODP Expedition 352. We infer at least three major phases of highly explosive volcanism during Oligocene to Pleistocene time. Provenance analysis based on glass composition assigns 56 of the tephras to a Japan source, including correlations with 12 major and widespread tephra layers resulting from individual eruptions in Kyushu, Central Japan, and North Japan between 115 ka and 3.5 Ma. The remaining 101 tephras are assigned to four source regions along the Izu-Bonin arc. One, exclusively assigned to the Oligocene age, is proximal to the Bonin Ridge islands; two reflect eruptions within the volcanic front and back-arc of the central Izu-Bonin arc, and a fourth region corresponds to the Northern Izu-Bonin arc source. First-order volume estimates imply eruptive magnitudes ranging from 6.3 to 7.6 for Japan-related eruptions and between 5.5 and 6.5 for IBM eruptions. Our results suggest tephras between 30 and 22 Ma reflect a subtly different Izu-Bonin chemical signature compared to the recent arc. After a ∼9 Ma gap in eruption, tephra supply from the Izu-Bonin arc predominated from 15 to 5 Ma, and finally a subequal mixture of tephra sources from the (palaeo)Honshu and Izu-Bonin arcs occured within the last ∼5 Ma. © 2017. The Authors.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
    Publication Date: 2020-09-01
    Print ISSN: 0009-2541
    Electronic ISSN: 1872-6836
    Topics: Chemistry and Pharmacology , Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...