ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Institut für Geographie, Friedrich-Alexander-Universität, Erlangen-Nürnberg | Supplement to: Seehaus, Thorsten; Marinsek, Sebastián; Skvarca, Pedro; van Wessem, Jan Melchior; Tijm-Reijmer, Carleen H; Seco, José; Braun, Matthias Holger (2016): Dynamic response of Sjögren Inlet glaciers, Antarctic Peninsula, to ice shelf breakup derived from multi-mission remote sensing time series. Frontiers in Earth Science Section; Section: Cryospheric Sciences, 4(66), 1-13, https://doi.org/10.3389/feart.2016.00066
    Publication Date: 2023-10-28
    Description: Substantial retreat or disintegration of numerous ice shelves have been observed on the Antarctic Peninsula. The ice shelf in the Prince Gustav Channel retreated gradually since the late 1980's and broke-up in 1995. Tributary glaciers reacted with speed-up, surface lowering and increased ice discharge, consequently contributing to sea level rise. We present a detailed long-term study (1993-2014) on the dynamic response of Sjögren Inlet glaciers to the disintegration of Prince Gustav Ice Shelf. We analyzed various remote sensing datasets to observe the reactions of the glaciers to the loss of the buttressing ice shelf. A strong increase in ice surface velocities was observed with maximum flow speeds reaching 2.82±0.48 m/d in 2007 and 1.50±0.32 m/d in 2004 at Sjögren and Boydell glaciers respectively. Subsequently, the flow velocities decelerated, however in late 2014, we still measured about two times the values of our first measurements in 1996. The tributary glaciers retreated 61.7±3.1 km² behind the former grounding line of the ice shelf. In regions below 1000 m a.s.l., a mean surface lowering of -68±10 m (-3.1 m/a) was observed in the period 1993-2014. The lowering rate decreased to -2.2 m/a in recent years. Based on the surface lowering rates, geodetic mass balances of the glaciers were derived for different time steps. High mass loss rate of -1.21±0.36 Gt/a was found in the earliest period (1993-2001). Due to the dynamic adjustments of the glaciers to the new boundary conditions the ice mass loss reduced to -0.59±0.11 Gt/a in the period 2012-2014, resulting in an average mass loss rate of -0.89±0.16 Gt/a (1993-2014). Including the retreat of the ice front and grounding line, a total mass change of -38.5±7.7 Gt and a contribution to sea level rise of 0.061±0.013 mm were computed. Analysis of the ice flux revealed that available bedrock elevation estimates at Sjögren Inlet are too shallow and are the major uncertainty in ice flux computations. This temporally dense time series analysis of Sjögren Inlet glaciers shows that the adjustments of tributary glaciers to ice shelf disintegration are still going on and provides detailed information of the changes in glacier dynamics.
    Keywords: Antarctic Peninsula; MULT; Multiple investigations; Priority Programme 1158 Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Sjögren; SPP1158
    Type: Dataset
    Format: application/zip, 93.2 MBytes
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-09-15
    Description: Firn densification modelling is key to understanding ice sheet mass balance, ice sheet surface elevation change, and the age difference between ice and the air in enclosed air bubbles. This has resulted in the development of many firn models, all relying to a certain degree on parameter calibration against observed data. We present a novel Bayesian calibration method for these parameters and apply it to three existing firn models. Using an extensive dataset of firn cores from Greenland and Antarctica, we reach optimal parameter estimates applicable to both ice sheets. We then use these to simulate firn density and evaluate against independent observations. Our simulations show a significant decrease (24 % and 56 %) in observation–model discrepancy for two models and a smaller increase (15 %) for the third. As opposed to current methods, the Bayesian framework allows for robust uncertainty analysis related to parameter values. Based on our results, we review some inherent model assumptions and demonstrate how firn model choice and uncertainties in parameter values cause spread in key model outputs.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-09-11
    Description: The latest polar version of the Regional Atmospheric Climate Model (RACMO2.3) has been applied to the Antarctic Peninsula (AP). In this study, the authors present results of a climate run at 5.5 km for the period 1979–2013, in which RACMO2.3 is forced by ERA-Interim atmospheric and ocean surface fields, using an updated AP surface topography. The model results are evaluated with near-surface temperature and wind measurements from 12 manned and automatic weather stations and vertical profiles from balloon soundings made at three stations. The seasonal cycle of near-surface temperature and wind is simulated well, with most biases still related to the limited model resolution. High-resolution climate maps of temperature and wind showing that the AP climate exhibits large spatial variability are discussed. Over the steep and high mountains of the northern AP, large west-to-east climate gradients exist, while over the gentle southern AP mountains the near-surface climate is dominated by katabatic winds. Over the flat ice shelves, where katabatic wind forcing is weak, interannual variability in temperature is largest. Finally, decadal trends of temperature and wind are presented, and it is shown that recently there has been distinct warming over the northwestern AP and cooling over the rest of the AP, related to changes in sea ice cover.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-10-09
    Description: We evaluate modelled Antarctic ice sheet (AIS) near-surface climate, surface mass balance (SMB) and surface energy balance (SEB) from the updated polar version of the regional atmospheric climate model RACMO2 (1979–2016). The updated model, referred to as RACMO2.3p2, incorporates upper-air relaxation, a revised topography, tuned parameters in the cloud scheme to generate more precipitation towards the AIS interior, and modified snow properties reducing drifting snow sublimation and increasing surface snowmelt. Comparisons of RACMO2 model output with several independent observational data show that the existing biases in AIS temperature, radiative fluxes and SMB components are further reduced with respect to the previous model version. The model integrated annual average SMB for the ice sheet including ice shelves (minus the Antarctic Peninsula (AP)) now amounts to 2229 Gt y-1, with an interannual variability of 109 Gt y-1. The largest improvement is found in modelled surface snowmelt, that now compares well with satellite and weather station observations. For the high-resolution (~ 5.5 km) AP simulation, results remain comparable to earlier studies. The updated model provides a new, high-resolution dataset of the contemporary near-surface climate and SMB of the AIS; this model version will be used for future climate scenario projections in a forthcoming study.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-11-28
    Description: We analyzed volume change and mass balance of outlet glaciers on the northern Antarctic Peninsula over the periods 2011 to 2013 and 2013 to 2016, using high resolution topographic data of the bistatic interferometric radar satellite mission TanDEM-X. Complementary to the geodetic method applying DEM differencing, we computed the net mass balance of the main outlet glaciers by the input/output method, accounting for the difference between the surface mass balance (SMB) and the discharge of ice into an ocean or ice shelf. The SMB values are based on output of the regional climate model RACMO Version 2.3p2. For studying glacier flow and retrieving ice discharge we generated time series of ice velocity from data of different satellite radar sensor, with radar images of the satellites TerraSAR-X and TanDEM-X as main source. The study area comprises tributaries to the Larsen-A, Larsen Inlet, and Prince-Gustav-Channel embayments (region A), the glaciers calving into Larsen B embayment (region B), and the glaciers draining into the remnant part of Larsen B ice shelf in SCAR Inlet (region C). The glaciers of region A, where the buttressing ice shelf disintegrated in 1995, and of region B (ice shelf break-up in 2002) show continuing losses in ice mass, with significant reduction of losses after 2013. The mass balance numbers for grounded glacier area of the region A are Bn = −3.98 ± 0.33 Gt a-1 during 2011 to 2013 and Bn = −2.38 ± 0.18 Gt a-1 during 2013 to 2016. The corresponding numbers for region B are Bn = −5.75 ± 0.45 Gt a-1 and Bn = −2.32 ± 0.25 Gt a-1. The mass losses in region C during the two periods were modest, Bn = −0.54 ± 0.38 Gt a-1, respectively Bn = −0.58 ± 0.25 Gt a-1. The main share in the overall mass losses of the region were contributed by two glaciers: Drygalski Glacier contributing 61 % to the mass deficit of region A, and Hektoria and Green glaciers accounting for 67 % to the mass deficit of region B. Hektoria and Green glaciers accelerated significantly in 2010/2011, triggering elevation losses up to 19.5 m a-1 on the lower terminus and a rate of mass depletion of 3.88 Gt a-1 during the period 2011 to 2013. Slowdown of calving velocities and reduced calving fluxes in 2013 to 2016 coincided with years when the sea ice cover in front of the glaciers persisted during summer.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-10-06
    Description: We evaluate modelled Greenland ice sheet (GrIS) near-surface climate, surface energy balance (SEB) and surface mass balance (SMB) from the updated regional climate model RACMO2 (1958–2016). The new model version, referred to as RACMO2.3p2, incorporates updated glacier outlines, topography and ice albedo fields. Parameters in the cloud scheme governing the conversion of cloud condensate into precipitation have been tuned to correct inland snowfall underestimation; snow properties are modified to reduce drifting snow and melt production in the ice sheet percolation zone. The ice albedo prescribed in the updated model is lower at the ice sheet margins, increasing ice melt locally. RACMO2.3p2 shows good agreement compared to in situ meteorological data and point SEB/SMB measurements, and better resolves SMB patterns than the previous model version, notably in the northeast, southeast, and along the K-transect in southwestern Greenland. This new model version provides updated, high-resolution gridded fields of the GrIS present-day climate and SMB, and will be used for future climate scenario projections in a forthcoming study.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-04-20
    Description: The Antarctic ice sheet mass balance is a major component of the sea level budget and results from the difference of two fluxes of a similar magnitude: ice flow discharging in the ocean and net snow accumulation on the ice sheet surface, i.e. the surface mass balance (SMB). Separately modelling ice dynamics and surface mass balance is the only way to project future trends. In addition, mass balance studies frequently use regional climate models (RCMs) outputs as an alternative to observed fields because SMB observations are particularly scarce on the ice sheet. Here we evaluate new simulations of the polar RCM MAR forced by three reanalyses, ERA-Interim, JRA-55 and MERRA2, for the period 1979–2015, and we compare our results to the last outputs of the RCM RACMO2 forced by ERA-Interim. We show that MAR and RACMO2 perform similarly well in simulating coast to plateau SMB gradients, and we find no significant differences in their simulated SMB when integrated over the ice sheet or its major basins. More importantly, we outline and quantify missing processes in both RCMs. Along stake transects, we show that both models accumulate too much snow on crests, and not enough snow in valleys, as a result of erosion-deposition processes not included in MAR, where the drifting snow module has been switched off, and probably underestimated in RACMO2 by a factor of three. As a consequence, the amount of drifting snow sublimating in the atmospheric boundary layer remains a potentially large mass sink needed to be better constrained. Moreover, MAR generally simulates larger SMB and snowfall amounts than RACMO2 inland, whereas snowfall rates are significantly lower in MAR than in RACMO2 at the ice sheet margins. This divergent behaviour at the margins results from differences in model parameterisations, as MAR explicitly advects precipitating particles through the atmospheric layers and sublimates snowflakes in the undersaturated katabatic layer, whereas in RACMO2 precipitation is added to the surface without advection through the atmosphere. Consequently, we corroborate a recent study concluding that sublimation of precipitation in the low-level atmospheric layers is a significant mass sink for the Antarctic SMB, as it may represent ∼240±25Gtyr-1 of difference in snowfall between RACMO2 and MAR for the period 1979–2015, which is 10% of the simulated snowfall loaded on the ice sheet and more than twice the surface snow sublimation as currently simulated by MAR.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-04-20
    Description: We evaluate modelled Antarctic ice sheet (AIS) near-surface climate, surface mass balance (SMB) and surface energy balance (SEB) from the updated polar version of the regional atmospheric climate model, RACMO2 (1979–2016). The updated model, referred to as RACMO2.3p2, incorporates upper-air relaxation, a revised topography, tuned parameters in the cloud scheme to generate more precipitation towards the AIS interior and modified snow properties reducing drifting snow sublimation and increasing surface snowmelt. Comparisons of RACMO2 model output with several independent observational data show that the existing biases in AIS temperature, radiative fluxes and SMB components are further reduced with respect to the previous model version. The model-integrated annual average SMB for the ice sheet including ice shelves (minus the Antarctic Peninsula, AP) now amounts to 2229 Gt y−1, with an interannual variability of 109 Gt y−1. The largest improvement is found in modelled surface snowmelt, which now compares well with satellite and weather station observations. For the high-resolution (∼ 5.5 km) AP simulation, results remain comparable to earlier studies. The updated model provides a new, high-resolution data set of the contemporary near-surface climate and SMB of the AIS; this model version will be used for future climate scenario projections in a forthcoming study.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-04-11
    Description: We analysed volume change and mass balance of outlet glaciers on the northern Antarctic Peninsula over the periods 2011 to 2013 and 2013 to 2016, using high-resolution topographic data from the bistatic interferometric radar satellite mission TanDEM-X. Complementary to the geodetic method that applies DEM differencing, we computed the net mass balance of the main outlet glaciers using the mass budget method, accounting for the difference between the surface mass balance (SMB) and the discharge of ice into an ocean or ice shelf. The SMB values are based on output of the regional climate model RACMO version 2.3p2. To study glacier flow and retrieve ice discharge we generated time series of ice velocity from data from different satellite radar sensors, with radar images of the satellites TerraSAR-X and TanDEM-X as the main source. The study area comprises tributaries to the Larsen A, Larsen Inlet and Prince Gustav Channel embayments (region A), the glaciers calving into the Larsen B embayment (region B) and the glaciers draining into the remnant part of the Larsen B ice shelf in Scar Inlet (region C). The glaciers of region A, where the buttressing ice shelf disintegrated in 1995, and of region B (ice shelf break-up in 2002) show continuing losses in ice mass, with significant reduction of losses after 2013. The mass balance numbers for the grounded glacier area of region A are −3.98 ± 0.33 Gt a−1 from 2011 to 2013 and −2.38 ± 0.18 Gt a−1 from 2013 to 2016. The corresponding numbers for region B are −5.75 ± 0.45 and −2.32 ± 0.25 Gt a−1. The mass balance in region C during the two periods was slightly negative, at −0.54 ± 0.38 Gt a−1 and −0.58 ± 0.25 Gt a−1. The main share in the overall mass losses of the region was contributed by two glaciers: Drygalski Glacier contributing 61 % to the mass deficit of region A, and Hektoria and Green glaciers accounting for 67 % to the mass deficit of region B. Hektoria and Green glaciers accelerated significantly in 2010–2011, triggering elevation losses up to 19.5 m a−1 on the lower terminus during the period 2011 to 2013 and resulting in a mass balance of −3.88 Gt a−1. Slowdown of calving velocities and reduced calving fluxes in 2013 to 2016 coincided with years in which ice mélange and sea ice cover persisted in proglacial fjords and bays during summer.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-01-29
    Description: The Antarctic ice sheet mass balance is a major component of the sea level budget and results from the difference of two fluxes of a similar magnitude: ice flow discharging in the ocean and net snow accumulation on the ice sheet surface, i.e. the surface mass balance (SMB). Separately modelling ice dynamics and SMB is the only way to project future trends. In addition, mass balance studies frequently use regional climate models (RCMs) outputs as an alternative to observed fields because SMB observations are particularly scarce on the ice sheet. Here we evaluate new simulations of the polar RCM MAR forced by three reanalyses, ERA-Interim, JRA-55, and MERRA-2, for the period 1979–2015, and we compare MAR results to the last outputs of the RCM RACMO2 forced by ERA-Interim. We show that MAR and RACMO2 perform similarly well in simulating coast-to-plateau SMB gradients, and we find no significant differences in their simulated SMB when integrated over the ice sheet or its major basins. More importantly, we outline and quantify missing or underestimated processes in both RCMs. Along stake transects, we show that both models accumulate too much snow on crests, and not enough snow in valleys, as a result of drifting snow transport fluxes not included in MAR and probably underestimated in RACMO2 by a factor of 3. Our results tend to confirm that drifting snow transport and sublimation fluxes are much larger than previous model-based estimates and need to be better resolved and constrained in climate models. Sublimation of precipitating particles in low-level atmospheric layers is responsible for the significantly lower snowfall rates in MAR than in RACMO2 in katabatic channels at the ice sheet margins. Atmospheric sublimation in MAR represents 363 Gt yr−1 over the grounded ice sheet for the year 2015, which is 16 % of the simulated snowfall loaded at the ground. This estimate is consistent with a recent study based on precipitation radar observations and is more than twice as much as simulated in RACMO2 because of different time residence of precipitating particles in the atmosphere. The remaining spatial differences in snowfall between MAR and RACMO2 are attributed to differences in advection of precipitation with snowfall particles being likely advected too far inland in MAR.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...