ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2013-08-31
    Description: The measurement of the difference of the transmit and receive delays of the signals in a Two-Way Satellite Time and Frequency Transfer (TWSTFT) Earth station is crucial for its nanosecond time transfer capability. Also, the monitoring of the change of this delay difference with time, temperature, humidity, or barometric pressure is important for improving the TWSTFT capabilities. An automated system for this purpose has been developed from the initial design at NMi-VSL. It calibrates separately the transmit and receive delays in cables, amplifiers, upconverters and downconverters, and antenna feeds. The obtained results can be applied as corrections to the TWSTFT measurement when, before and after a measurement session, a calibration session is performed. Preliminary results obtained at NMi-VSL will be shown. Also, if available, the results of a manual version of the system that is planned to be circulated in Sept. 1994 together with a USNO portable station on a calibration trip to European TWSTFT Earth stations.
    Keywords: PHYSICS (GENERAL)
    Type: NASA. Goddard Space Flight Center, The 26th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting; p 305-317
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-06-07
    Description: Two-way satellite time and frequency transfer (TWSTFT) is the most accurate and precise method of comparing two remote clocks or time scales. The accuracy obtained is dependent on the accuracy of the determination of the non-reciprocal delays of the transmit and the receive paths. When the same transponders in the satellite at the same frequencies are used, then the non-reciprocity in the Earth stations is the limiting factor for absolute time transfer.
    Keywords: Physics (General)
    Type: 27th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting; 359-372; NASA-CP-3334
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-31
    Description: The experiment using small earth stations for transatlantic two-way satellite time transfer between the USA and Germany has had its 10th anniversary this year. Pseudo-random noise coded time signals were phase modulated and demodulated at each station using a modem. Recently, during the last two weeks of Aug. 1993, six European time laboratories have used the INTELSAT 307E satellite for line-up tests and preliminary time transfer sessions using the same type of MITREX modem. The need for a uniform format for the exchange of data was felt heavily after these sessions. This problem was foreseen and addressed in international working parties. During Apr. 1993, in Task Group 7/2 of the ITU Radiocommunication Sector, a very intense discussion has taken place about what procedure should be recommended for TWSTFT and what items the header and data lines of the resulting data fields should contain. A difficulty is that two different methods of calibration of the earth station delays exist which result in different sets of delay data to be exchanged. Further study and discussions are necessary. Also, a meeting of the CCDS Working Group on TWSTFT addressed this in Oct. 1993. The outcome of the discussions and the prospect for future developments are presented.
    Keywords: PHYSICS (GENERAL)
    Type: NASA. Goddard Space Flight Center, The 25th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting; p 101-118
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-06-07
    Description: For a decade and a half Global Positioning System (GPS) common-view time transfer has greatly served the needs of primary timing laboratories for regular intercomparisons of remote atomic clocks. However, GPS as a one-way technique has natural limits and may not meet all challenges of the comparison of the coming new generation of atomic clocks. Two-way satellite time and frequency transfer (TWSTFT) is a promising technique which may successfully complement GPS. For two years, regular TWSTFT's have been performed between eight laboratories situated in both Europe and North America, using INTELSAT satellites. This has enabled an extensive direct comparison to be made between these two high performance time transfer methods. The performance of the TWSTFT and GPS common view methods are compared over a number of time-transfer links. These links use a variety of time-transfer hardware and atomic clocks and have baselines of substantially different lengths. The relative merits of the two time-transfer systems are discussed.
    Keywords: Physics (General)
    Type: 27th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting; 347-358; NASA-CP-3334
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...