ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 89 (2001), S. 3847-3851 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Single-crystalline Bi nanowires with diameters ranging from 20 to 70 nm were prepared by electrodeposition using nanoporous aluminum oxide membranes rather than the more usual track-etched polycarbonate membranes. X-ray diffraction and selected area electron diffraction investigations revealed that the nanowires are essentially single crystalline and highly oriented. The temperature dependence of zero-field resistance of different diameter nanowires indicated that these Bi nanowires undergo a semimetal–semiconductor transition due to two-dimensional quantum confinement effects. The resistance maximum was observed at 50 K in zero magnetic field for 20 nm Bi nanowires, while the resistance minimum at 258 K for 50 nm Bi nanowires, due to the quantum size effect. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 88 (2000), S. 2617-2622 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We studied theoretically ballistic electronic transport in a proposed mesoscopic structure—quantum cable. Our results demonstrated that quantum cable is a unique structure for the study of mesoscopic transport. With the increasing Fermi energy of electrons, the ballistic conductance of quantum cable increases in a series of steps with different height. Besides the steps of one and two quantum conductance units (2e2/h), conductance steps of three and four quantum conductance units can be also expected due to the accidental degeneracies (crossings) of the transverse subbands of quantum cable. As one of the cable structure parameters is varied, the width of conductance plateaus varies in the nonmonotonous way, which arises from the nonmonotonic variation of the separation between the adjoining transverse subbands. In the weak coupling limit, the first two conductance plateaus are both of just one quantum conductance unit 2e2/h for the quantum cable structure of two cylindrical wires with similar thicknesses. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 85 (1999), S. 1739-1745 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Nanopowders of Bi2Ti2O7 with various Na+ modifications were synthesized by chemical coprecipitation, and their phase structures transform into a solid solution of Bi4Ti3O12 and Bi2Ti4O11 after sintering at high temperature. The dielectric peak at around 517 °C in Bi4Ti3O12 is related to the domain transformation at 445 °C in Bi2Ti2O7 and at 468 °C in Bi2Ti4O11 and moves to a higher temperature with increasing Bi2Ti4O11 concentration in the solid solution. Consequently, a dramatic drop of dielectric value in the solid solution was observed under a direct current bias due to the loss of relaxation mechanisms originated from the defect dipole orientation as well as oxygen vacancy migration. Furthermore, E-field dependent resistive measurements in Bi2Ti4O11 ceramics at various temperatures assert the defect dipole rotation and oxygen vacancy migration in combination with macrodomain alignment inside grains. Especially around phase transition, the field-induced phase switching leads to the abnormal jump of resistivity. Finally, the P–E hysteresis loop measurements show a good ferroelectricity in the solid solution. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 75 (1999), S. 2455-2457 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Large-scale synthesis of single crystalline GaN nanowires in anodic alumina membrane was achieved through a gas reaction of Ga2O vapor with a constant flowing ammonia atmosphere at 1273 K. X-ray diffraction, Raman backscattering spectroscopy, scanning electron microscopy, and transmission electron microscopy indicated that those GaN nanowires with hexagonal wurtzite structure were about 14 nm in diameter and up to several hundreds of micrometers in length. The growth mechanism of the single crystalline GaN nanowires is discussed. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 79 (2001), S. 839-841 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Ordered semiconductor In2O3 nanowire arrays are uniformly assembled into hexagonally ordered nanochannels of anodic alumina membranes (AAMs) by electrodeposition and oxidizing methods. Their microstructures were characterized by x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. A blue-green photoluminescence (PL) band in the wavelength range of 300–650 nm was observed in the In2O3/AAM assembly system. The PL intensity and peak position depend on the annealing temperature, which is mainly attributed to the singly ionized oxygen vacancy in the In2O3 nanowire array system. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 78 (2001), S. 3202-3204 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Monoclinic gallium oxide (β-Ga2O3) nanowires were synthesized by heat treating a composite material of GaAs and pre-evaporated Au at 1240 °C in dry oxygen atmosphere. The catalytic Au metal generated liquid nanoclusters that serve as reactive sites confining and directing the growth of β-Ga2O3 nanowires during the vapor-liquid-solid growth process. The β-Ga2O3 nanowires have diameters ranging from 20 to 50 nm and lengths of several micrometers. Photoluminescence measurement under excitation at 250 nm shows that the bulk β-Ga2O3 nanowires have a stable blue emission at 475 nm and an ultraviolet emission at 330 nm, which may be related to the defects such as the oxygen vacancy and the gallium–oxygen vacancy pair. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 78 (2001), S. 102-104 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Ag/Si nanocomposite films were prepared by the radio-frequency magnetron cosputtering method. The fine structure of the plasmon resonance absorption peak was found in film samples. X-ray photoelectron spectroscopy analysis indicated that the samples were composed of a two-layer structure, which accounted for the structure of the optical absorption spectra. The peak located near 445 nm is the plasmon resonance absorption peak of Ag nanoparticles embedded in a partially oxidized Si matrix. Its intensity decreases with decreasing film thickness and disappears in a very thin sample. The peak located near 380 nm originates from the plasmon resonance absorption of the thoroughly oxidized surface layer of the sample. Its intensity does not change with increasing thickness, but it cannot be observed in the very thick sample. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 74 (1999), S. 114-116 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Nanopowders of Bi2Ti2O7 with various La modifications were fabricated by chemical coprecipitation. As sintered at high temperature, the phase structure in powders translates into (La0.22Bi0.78)4Ti3O12 and (La0.26Bi0.74)2Ti4O11 with increasing La concentration, respectively. Dielectric and nonlinear resistivity investigations in bulk ceramics show that oxygen vacancy relaxation or defect dipole polarization contributes considerably to the dielectric permittivity, while the mechanism is shut off under a threshold field dependent on phase transition as well as temperature. Furthermore, the quantitative analysis of x-ray photoelectron spectroscopy indicates the deviation of oxygen element composition at surfaces of (La0.22Bi0.78)4Ti3O12 ceramic grains from the standard ratio. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 78 (2001), S. 1125-1127 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Highly ordered TiO2 nanowire (TN) arrays were prepared in anodic alumina membranes (AAMs) by a sol-gel method. The TNs are single crystalline anatase phase with uniform diameters around 60 nm. At room temperature, photoluminescence (PL) measurements of the TN arrays show a visible broadband with three peaks, which are located at about 425, 465, and 525 nm that are attributed to self-trapped excitons, F, and F+ centers, respectively. A model is also presented to explain the PL intensity drop-down of the TN arrays embedded in AAMs: the blue PL band of AAMs arises from the F+ centers on the pore walls, and the TNs first form in the center area of the pores and then extend to the pore walls. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 76 (2000), S. 2011-2013 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Ordered semiconductor ZnO nanowire arrays embedded in anodic alumina membranes (AAM) were fabricated by generating alumina templates with nanochannels, electrodepositing Zn in them, and then oxidizing the Zn nanowire arrays. The polycrystalline ZnO nanowires with the diameters ranging from 15 to 90 nm were uniformly assembled into the hexagonally ordered nanochannels of the AAM. Photoluminescence (PL) measurements show a blue PL band in the wavelength range of 450–650 nm caused by the singly ionized oxygen vacancy in ZnO nanowires. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...