ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-02
    Description: Inflatable technology has been identified as a potential solution to the problem of achieving small mass, high packaging efficiency, and reliable deployment for future NASA spaceborne synthetic aperture radar (SAR) antennas. Presently, there exists a requirement for a dual-polarized L-band SAR antenna with an aperture size of 10m x 3m, a center frequency of 1.25GHz, a bandwidth of 80MHz, electronic beam scanning, and a mass of less than 100kg. The work presented below is part of the ongoing effort to develop such an inflatable antenna array.
    Keywords: Communications and Radar
    Type: IEEE Antennas and Propagation Society International Symposium, Volume 1; 276-279; IEEE-Catalog-99CH37010-Vol-1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: This paper describes a large dual-beam, dual polarized Ka-Band reflectarray antenna prototype which was developed to demonstrate that key requirements of a space borne interferometric radar altimeter are achievable. The antenna consists of a 2.5 x 0.26 m aperture comprised of a rectangular grid of square patch printed circuit elements. The 2.6 m focal length offset-fed reflector is illuminated by a waveguide slot array feed focused in the nearfield. Measured results show good agreement with gain and radiation pattern predictions and demonstrates 〉50% aperture efficiency.
    Keywords: Communications and Radar
    Type: IEEE International Symposium on Antennas and Propagation; Jul 08, 2012 - Jul 14, 2012; Chicago, IL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: The Uninhabited Airborne Vehicle Synthetic Aperture Radar (UAVSAR) is a pod-based, L-band (1.26 GHz), repeatpass, interferometric, synthetic aperture radar (InSAR) used for Earth science applications. Repeat-pass interferometric radar measurements from an airborne platform require an antenna that can be steered to maintain the same angle with respect to the flight track over a wide range of aircraft yaw angles. In order to be able to collect repeat-pass InSAR data over a wide range of wind conditions, UAVSAR employs an active electronically scanned array (AESA). During data collection, the UAVSAR flight software continuously reads the aircraft attitude state measured by the Embedded GPS/INS system (EGI) and electronically steers the beam so that it remains perpendicular to the flight track throughout the data collection
    Keywords: Aircraft Communications and Navigation
    Type: NPO-47503 , NASA Tech Briefs, September 2011; 11
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: This work describes the development of a large Ka Band Slot Array for the Glacier and Land Ice Surface Topography Interferometer (GLISTIN), a proposed spaceborne interferometric synthetic aperture radar for topographic mapping of ice sheets and glaciers. GLISTIN will collect ice topography measurement data over a wide swath with sub-seasonal repeat intervals using a Ka-band digitally beamformed antenna. For technology demonstration purpose a receive array of size 1x1 m, consisting of 160x160 radiating elements, was developed. The array is divided into 16 sticks, each stick consisting of 160x10 radiating elements, whose outputs are combined to produce 16 digital beams. A transmit array stick was also developed. The antenna arrays were designed using Elliott's design equations with the use of an infinite-array mutual-coupling model. A Floquet wave model was used to account for external coupling between radiating slots. Because of the use of uniform amplitude and phase distribution, the infinite array model yielded identical values for all radiating elements but for alternating offsets, and identical coupling elements but for alternating positive and negative tilts. Waveguide-fed slot arrays are finding many applications in radar, remote sensing, and communications applications because of their desirable properties such as low mass, low volume, and ease of design, manufacture, and deployability. Although waveguide-fed slot arrays have been designed, built, and tested in the past, this work represents several advances to the state of the art. The use of the infinite array model for the radiating slots yielded a simple design process for radiating and coupling slots. Method of moments solution to the integral equations for alternating offset radiating slots in an infinite array environment was developed and validated using the commercial finite element code HFSS. For the analysis purpose, a method of moments code was developed for an infinite array of subarrays. Overall the 1x1 m array was found to be successful in meeting the objectives of the GLISTIN demonstration antenna, especially with respect to the 0.042deg, 1/10th of the beamwidth of each stick, relative beam alignment between sticks.
    Keywords: Man/System Technology and Life Support
    Type: NPO-47416 , NASA Tech Briefs, August 2011; 8
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: A multilayer patch antenna, similar to a Yagi antenna, surrounded by a metallic wall has been devised to satisfy requirements to fit within a specified size and shape and to generate a beam with a half-power angular width of 〈=40 deg. This antenna provides a gain of about 14 dB; in contrast, the gain of a typical single-patch antenna lies between 5 and 6 dB. This antenna can be considered an alternative to a two-dimensional array of patch antenna elements, or to a horn or helical antenna. Unlike a two-dimensional array of patches, this antenna can function without need for a power-division network (unless circular polarization is needed). The profile of this antenna is lower than that of a horn or a helical antenna designed for the same frequency. The primary disadvantage of this antenna, relative to a horn or a helical antenna, is that its footprint is slightly larger.
    Keywords: Communications and Radar
    Type: NPO-21242 , NASA Tech Briefs, July 2003; 11
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-12
    Description: A lightweight reflectarray antenna that would enable simultaneous operation at frequencies near 7.115 GHz and frequencies near 32 GHz is undergoing development. More precisely, what is being developed is a combination of two reflectarray antennas -- one for each frequency band -- that share the same aperture. (A single reflectarray cannot work in both frequency bands.) The main advantage of the single dual-band reflectarray is that it would weigh less and occupy less space than do two single-band reflectarray antennas
    Keywords: Man/System Technology and Life Support
    Type: NPO-40689 , NASA Tech Briefs, October 2007; 14-15
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-12
    Description: The figure shows a dual-beam, dualpolarization Ku-band antenna, the reflector of which comprises an assembly of small reflectarrays arranged in a piecewise- planar approximation of a parabolic reflector surface. The specific antenna design is intended to satisfy requirements for a wide-swath spaceborne radar altimeter, but the general principle of piecewise-planar reflectarray approximation of a parabolic reflector also offers advantages for other applications in which there are requirements for wideswath antennas that can be stowed compactly and that perform equally in both horizontal and vertical polarizations. The main advantages of using flat (e.g., reflectarray) antenna surfaces instead of paraboloidal or parabolic surfaces is that the flat ones can be fabricated at lower cost and can be stowed and deployed more easily. Heretofore, reflectarray antennas have typically been designed to reside on single planar surfaces and to emulate the focusing properties of, variously, paraboloidal (dish) or parabolic antennas. In the present case, one approximates the nominal parabolic shape by concatenating several flat pieces, while still exploiting the principles of the planar reflectarray for each piece. Prior to the conception of the present design, the use of a single large reflectarray was considered, but then abandoned when it was found that the directional and gain properties of the antenna would be noticeably different for the horizontal and vertical polarizations.
    Keywords: Man/System Technology and Life Support
    Type: NPO-40889 , NASA Tech Briefs, May 2009; 12-13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-24
    Description: Disclosed herein is a patch antenna comprises a planar conductive patch attached to a ground plane by a support member, and a probe connector in electrical communication with the conductive patch arranged to conduct electromagnetic energy to or from the conductive patch, wherein the conductive patch is disposed essentially parallel to the ground plane and is separated from the ground plane by a spacing distance; wherein the support member comprises a plurality of sides disposed about a central axis oriented perpendicular to the conductive patch and the ground plane; wherein the conductive patch is solely supported above the ground plane by the support member; and wherein the support member provides electrical communication between the planer conductive patch and the ground plane.
    Keywords: Electronics and Electrical Engineering
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: We have developed the first L-band membrane-based active phased array. The antenna is a 16x16 element patch array with dimensions of 2.3mx2.6m. The array uses membrane-compatible Transmit/Receive (T/R) modules for electronic beam steering. We will discuss the antenna design, the fabrication of this large array, the T/R module development, the signal distribution approach and the measured results of the array
    Keywords: Communications and Radar
    Type: NASA Earth Science Technology Conference, Pasadena, California June 21, 2011; Jun 21, 2011; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: While the design of waveguide slot arrays in not new, this particular design effort shows that very good results can be achieved on a first attempt using established slot array design techniques and commercial software for the waveguide power divider network. The presentation will discuss this design process in detail.
    Type: 2005 IEEE AP-S International Symposium and USNC/URSI National Radio Science Meeting; Jul 03, 2005 - Jul 08, 2005; Washington, DC; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...