ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2019
    Description: Accidents occur frequently in traffic-intensive waters, which restrict the safe and rapid development of the shipping industry. Due to the suddenness, randomness, and uncertainty of accidents in traffic-intensive waters, the probability of the risk factors causing traffic accidents is usually high. Thus, properly analyzing those key risk factors is of great significance to improve the safety of shipping. Based on the analysis of influencing factors of ship navigational risks in traffic-intensive waters, this paper proposes a cloud model to excavate the factors affecting navigational risk, which could accurately screen out the key risk factors. Furthermore, the risk causal model of ship navigation in traffic-intensive waters is constructed by using the infectious disease dynamics method in order to model the key risk causal transmission process. Moreover, an empirical study of the Yangtze River estuary is conducted to illustrate the feasibility of the proposed models. The research results show that the cloud model is useful in screening the key risk factors, and the constructed causal model of ship navigational risks in traffic-intensive waters is able to provide accurate analysis of the transmission process of key risk factors, which can be used to reduce the navigational risk of ships in traffic-intensive waters. This research provides both theoretical basis and practical reference for regulators in the risk management and control of ships in traffic-intensive waters.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: Water transportation accidents have occurred frequently in recent years. In order to improve the emergency response capability of water transportation systems under traffic-intensive conditions, this paper identifies and analyzes the vulnerability in traffic-intensive areas of water transportation systems. Firstly, the vulnerability identification model was constructed based on the analysis of characteristics and the vulnerability-influencing factors of water transportation systems. The newly proposed model is composed of three parts including the DEMATEL (Decision Making Trial and Evaluation Laboratory) method, ISM (interpretative structural modeling) model, and AHP (Analytic Hierarchy Process)–entropy weight method. Finally, a case study of the Yangtze River was conducted to test the logicality and feasibility of the proposed model. The research results reveal that traffic flow density, ship traffic, tides, fog, and bad weather are the key factors affecting the vulnerability of water transportation in traffic-intensive areas of the Yangtze River estuary. However, the influence of navigation aid configuration, berth, anchorage, and obstruction on the system vulnerability is relatively lower. The findings of this study can provide helpful references for maritime administration authorities on the management of water transportation safety.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...