ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular evolution 38 (1994), S. 113-120 
    ISSN: 1432-1432
    Keywords: Antisense sequence ; Bacterial genes ; Base-trimer distribution ; Nonstop frame ; Enzyme evolution ; Symmetry in DNA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The bacterial DNA sequence in GenBank database were divided into coding and noncoding regions and examined for the base-trimer distribution in every triplet frame on the sense and antisense strands. The results revealed that for the noncoding region, both strands have very similar base-trimer distributions and have no frame specificity; that is, DNA is symmetric in the noncoding region. For the coding region, on the other hand, the symmetry is broken only in the triplet framework, and we found a special triplet-frame-specific symmetry which appears when the two complementary strands of the coding region are read from their 5′ ends. In addition, the following frame specificity was also observed in the distribution of stop codons on the antisense strand of the coding region. When the antisense sequences of the open reading frames (ORFs) in the database are read in the three reading frames, the same reading frame as the corresponding ORF contains a significantly larger amount of long open frames without stop codons (i.e., nonstop frames [NSFs]) than expected, while the number of NSFs in the other two reading frames is similar to that of the expected one. That is, NSFs as well as ORFs are maintained in a frame-specific manner, and in this sense, DNA becomes symmetrical even in the coding region. These two kinds of frame-specific symmetries indicate that only an ORF and its complementary triplets are specifically recognized and maintained in DNA. We suppose that the antisense strands as well as the sense strands in the coding region may be transcribed, thereby producing various kinds of proteins corresponding to NSFs, though their amount may not be large. The presence of these proteins should have some benefits for living organisms, and therefore we propose that these proteins are upcoming enzymes having novel functions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 613 (1990), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 672 (1992), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 750 (1995), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature America Inc.
    Nature structural biology 6 (1999), S. 743-746 
    ISSN: 1072-8368
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Medicine
    Notes: [Auszug] This work focuses on streamlining the exploration of all possible sequences in an attempt to find polypeptides capable of folding into unique structures. Using a computer simulation, we have demonstrated the efficacy of constraining an 'active site' toward the correct configuration, in this case ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1546-1696
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: [Auszug] We describe a new method of random mutagenesis that employs the addition of peptide tails with random sequences to the C–terminal of enzyme molecules. A mutant population of catalase I from Bacillus stearothermophilus prepared by this method has a diversity in thermostability and enzyme ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of mathematical biology 59 (1997), S. 139-196 
    ISSN: 1522-9602
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Mathematics
    Notes: Abstract An isologous diversification theory for cell differentiation is proposed, based on simulations of interacting cells with biochemical networks and the cell division process following consumption of some chemicals. According to the simulations of the interaction-based dynamical systems model, the following scenario of the cell differentiation is proposed. (1) Up to some threshold number, divisions bring about almost identical cells with synchronized biochemical oscillations. (2) As the number is increased, the oscillations lose synchrony, leading to groups of cells with different phases of oscilaations. (3) Amplitudes of oscillation and averaged chemical compositions start to differ by groups of cells. The differentiated behavior of states is transmitted to daughter cells. (4) Recursivity is formed so that the daughter cells keep the identical chemical character. This “memory” is made possible through the transfer of initial conditions. (5) Successive differentiation proceeds. The mechanism of tumor cell formation, origin of stem cells, anomalous differentiation by transplantations, apoptosis and other features of cell differentiation process are also discussed, with some novel predictions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Electrophoresis 12 (1991), S. 103-108 
    ISSN: 0173-0835
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Selfish DNA, coding sequences, and junk DNA in the genome are no stranger to each other; rather, they represent three phases in the life cycle of DNA. Accordingly, they all obey the same grammatical rule of TG/CA/CT excess and CG/TA deficiency. On the one hand, it is this very rule which keeps isoelectric points of most proteins near the neutral range. On the other hand, this rule creates numerous palindromes, thus maintaining symmetry between complementary strands. Many of these palindromes encode identical oligopeptides on both strands.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-03-28
    Description: To date, various cellular functions have been reconstituted in vitro such as self-replication systems using DNA, RNA, and proteins. The next important challenges include the reconstitution of the interactive networks of self-replicating species and investigating how such interactions generate complex ecological behaviors observed in nature. Here, we synthesized a simple replication system composed of two self-replicating host and parasitic RNA species. We found that the parasitic RNA eradicates the host RNA under bulk conditions; however, when the system is compartmentalized, a continuous oscillation pattern in the population dynamics of the two RNAs emerges. The oscillation pattern changed as replication proceeded mainly owing to the evolution of the host RNA. These results demonstrate that a cell-like compartment plays an important role in host–parasite ecological dynamics and suggest that the origin of the host–parasite coevolution might date back to the very early stages of the evolution of life.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-02-06
    Description: To elucidate the dynamic features of a biologically relevant large-scale reaction network, we constructed a computational model of minimal protein synthesis consisting of 241 components and 968 reactions that synthesize the Met-Gly-Gly (MGG) peptide based on anEscherichia coli-based reconstituted in vitro protein synthesis system. We performed a simulation using parameters collected primarily from the literature and found that the rate of MGG peptide synthesis becomes nearly constant in minutes, thus achieving a steady state similar to experimental observations. In addition, concentration changes to 70% of the components, including intermediates, reached a plateau in a few minutes. However, the concentration change of each component exhibits several temporal plateaus, or a quasi-stationary state (QSS), before reaching the final plateau. To understand these complex dynamics, we focused on whether the components reached a QSS, mapped the arrangement of components in a QSS in the entire reaction network structure, and investigated time-dependent changes. We found that components in a QSS form clusters that grow over time but not in a linear fashion, and that this process involves the collapse and regrowth of clusters before the formation of a final large single cluster. These observations might commonly occur in other large-scale biological reaction networks. This developed analysis might be useful for understanding large-scale biological reactions by visualizing complex dynamics, thereby extracting the characteristics of the reaction network, including phase transitions.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...