ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: Powered, radio-controlled flight tests were conducted on a 1/4-scale model of a spin-resistant trainer configuration to determine the stall departure and spin resistance characteristics provided by an outboard wing leading-edge droop modification. The model was instrumented to provide quantitative as well as qualitative information on flight characteristics. Flight test results indicated that the unmodified configuration (wing leading-edge droop off) exhibited an abrupt, uncontrollable roll departure at the stall. With the outboard wing leading-edge droop installed, the modified configuration exhibited flight characteristics that were resistant to stall departure and spin entry. The stall departure and spin resistance characteristics of the modified configuration were demonstrated in flight maneuvers that included idle-power stalls, full-power stalls, sideslip stalls, and accelerated stalls.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Journal of Aircraft (ISSN 0021-8669); 29; 5, Se
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: Modern composite manufacturing methods have provided the opportunity for smooth surfaces that can sustain large regions of natural laminar flow (NLF) boundary layer behavior and have stimulated interest in developing advanced NLF airfoils and improved aircraft designs. Some of the preliminary results obtained in exploratory research investigations on advanced aircraft configurations at the NASA Langley Research Center are discussed. Results of the initial studies have shown that the aerodynamic effects of configuration variables such as canard/wing arrangements, airfoils, and pusher-type and tractor-type propeller installations can be particularly significant at high angles of attack. Flow field interactions between aircraft components were shown to produce undesirable aerodynamic effects on a wing behind a heavily loaded canard, and the use of properly designed wing leading-edge modifications, such as a leading-edge droop, offset the undesirable aerodynamic effects by delaying wing stall and providing increased stall/spin resistance with minimum degradation of laminar flow behavior.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Laminar Flow Aircraft Certification; p 185-225
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Journal of Aircraft (ISSN 0021-8669); 28; 728-734
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: An investigation to determine the effects of vortex flaps on the flight dynamic characteristics of the F-106B in the area of low-speed, high-angle-of-attack flight was undertaken on a 0.15-scale model of the airplane in the Langley 30- by 60-Foot Tunnel. Static force tests, dynamic forced-oscillation tests, as well as free-flight tests were conducted to obtain a data base on the flight characteristics of the F-106B airplane with vortex flaps. Vortex flap configurations tested included a full-span gothic flap, a full-span constant-chord flap, and a part-span gothic flap.
    Keywords: AERODYNAMICS
    Type: NASA-TP-2700 , L-16202 , NAS 1.60:2700
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: At the request of the United States Marine Corps, an exploratory wind-tunnel and flight test investigation was conducted by the Flight Dynamics Branch at the NASA Langley Research Center to improve the stability, controllability, and general flight characteristics of the Marine Corps Exdrone RPV (Remotely Piloted Vehicle) configuration. Static wind tunnel tests were conducted in the Langley 12 foot Low Speed Wind Tunnel to identify and improve the stability and control characteristics of the vehicle. The wind tunnel test resulted in several configuration modifications which included increased elevator size, increased vertical tail size and tail moment arm, increased rudder size and aileron size, the addition of vertical wing tip fins, and the addition of leading-edge droops on the outboard wing panel to improve stall departure resistance. Flight tests of the modified configuration were conducted at the NASA Plum Tree Test Site to provide a qualitative evaluation of the flight characteristics of the modified configuration.
    Keywords: AERODYNAMICS
    Type: NASA-TM-4200 , L-16742 , NAS 1.15:4200
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: As part of a multiphased program for subsonic transport high-lift flight research, flight tests were conducted on the Transport Systems Research Vehicle (B737-100 aircraft) at the NASA Langley Research Center, to obtain detailed flow characteristics of the high-lift flap system for correlation with computational and wind-tunnel investigations. Pressure distributions, skin friction, and flow-visualization measurements were made on a triple-slotted flap system for a range of flap deflections, chord Reynolds numbers (10 to 21 million), and Mach numbers (0.16 to 0.36). Experimental test results are given for representative flap settings indicating flow separation on the fore-flap element for the largest flap deflection. Comparisons of the in-flight flow measurements were made with predictions from available viscous multielement computational methods modified with simple-sweep theory. Computational results overpredicted the experimentally measured pressures, particularly in the case involving separation of the fore lap, indicating the need for better modeling of confluent boundary layers and three-dimensional sweep effects.
    Keywords: AIRCRAFT INSTRUMENTATION
    Type: In: ICAS, Congress, 18th, Beijing, China, Sept. 20-25, 1992, Proceedings. Vol. 2 (A93-14151 03-01); p. 1392-1406.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: Flight tests are being conducted as part of a multiphased subsonic transport high-lift research project for correlation with ground based wind tunnel and computational results. The NASA Langley TSRV 737-100 airplane is utilized to obtain flow characteristics at full-scale Reynolds numbers to contribute to the knowledge of several dominant high-lift flow issues such as boundary layer transition, confluent boundary layer development, and 3D flow separation. Recent test results obtained for a full-chord wing section including the slat, main-wing, and flap elements are presented.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: AIAA PAPER 92-4103 , In: AIAA Biennial Flight Test Conference, 6th, Hilton Head Island, SC, Aug. 24-26, 1992, Technical Papers (A93-11251 01-05); p. 229-246.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: Reynolds number, a measure of the ratio of inertia to viscous forces, is a fundamental similarity parameter for fluid flows and therefore, would be expected to have a major influence in aerodynamics and aeronautics. Reynolds number influences are generally large, but monatomic, for attached laminar (continuum) flow; however, laminar flows are easily separated, inducing even stronger, non-monatomic, Reynolds number sensitivities. Probably the strongest Reynolds number influences occur in connection with transitional flow behavior. Transition can take place over a tremendous Reynolds number range, from the order of 20 x 10(exp 3) for 2-D free shear layers up to the order of 100 x 10(exp 6) for hypersonic boundary layers. This variability in transition behavior is especially important for complex configurations where various vehicle and flow field elements can undergo transition at various Reynolds numbers, causing often surprising changes in aerodynamics characteristics over wide ranges in Reynolds number. This is further compounded by the vast parameterization associated with transition, in that any parameter which influences mean viscous flow development (e.g., pressure gradient, flow curvature, wall temperature, Mach number, sweep, roughness, flow chemistry, shock interactions, etc.), and incident disturbance fields (acoustics, vorticity, particulates, temperature spottiness, even electro static discharges) can alter transition locations to first order. The usual method of dealing with the transition problem is to trip the flow in the generally lower Reynolds number wind tunnel to simulate the flight turbulent behavior. However, this is not wholly satisfactory as it results in incorrectly scaled viscous region thicknesses and cannot be utilized at all for applications such as turbine blades and helicopter rotors, nacelles, leading edge and nose regions, and High Altitude Long Endurance and hypersonic airbreathers where the transitional flow is an innately critical portion of the problem.
    Keywords: AERODYNAMICS
    Type: NASA-TM-107730 , NAS 1.15:107730
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-28
    Description: Flight experiments are being conducted as part of a multiphased subsonic transport high-lift research program for correlation with wind-tunnel and computational results. The NASA Langley Transport Systems Research Vehicle (B737-100 aircraft) is used to obtain in-flight flow characteristics at full-scale Reynolds numbers to contribute to the understanding of 3-D high-lift, multi-element flows including attachment-line transition and relaminarization, confluent boundary-layer development, and flow separation characteristics. Flight test results of pressure distributions and skin friction measurements were obtained for a full-chord wing section including the slat, main-wing, and triple-slotted, Fowler flap elements. Test conditions included a range of flap deflections, chord Reynolds numbers (10 to 21 million), and Mach numbers (0.16 to 0.40). Pressure distributions were obtained at 144 chordwise locations of a wing section (53-percent wing span) using thin pressure belts over the slat, main-wing, and flap elements. Flow characteristics observed in the chordwise pressure distributions included leading-edge regions of high subsonic flows, leading-edge attachment-line locations, slat and main-wing cove-flow separation and reattachment, and trailing-edge flap separation. In addition to the pressure distributions, limited skin-friction measurements were made using Preston-tube probes. Preston-tube measurements on the slat upper surface suggested relaminarization of the turbulent flow introduced by the pressure belt on the slat leading-edge surface when the slat attachment line was laminar. Computational analysis of the in-flight pressure measurements using two-dimensional, viscous multielement methods modified with simple-sweep theory showed reasonable agreement. However, overprediction of the pressures on the flap elements suggests a need for better detailed measurements and improved modeling of confluent boundary layers as well as inclusion of three-dimensional viscous effects in the analysis.
    Keywords: AERODYNAMICS
    Type: AGARD, High-Lift System Aerodynamics; 19 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-12
    Description: Stall-departure-resistance enhancer imposes lesser drag penalty than nortex generators of older types. Increases lift by as much as 30 percent at angles of attack otherwise in poststall region. Device is flat plate wedge with 60 degree sweep angle and attached so it protrudes from leading edge of wing. Tip is sharp point, and edges made thin and sharp to induce good vortical flow. Applications include those intended to increase safety for broad range of aircraft, including trainers, fighters, general-aviation aircraft, and commercial transport aircraft. Nonaerospace applications where flow stall is problem under certain conditions, such as in control of separation in flow diffusers. Other applications in fluid machinery and fluid flow.
    Keywords: MECHANICS
    Type: LAR-14221 , NASA Tech Briefs (ISSN 0145-319X); 16; 1; P. 61
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...