ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Cellular and molecular neurobiology 12 (1992), S. 297-307 
    ISSN: 1573-6830
    Keywords: electron microscopy ; horseradish peroxidase ; endosomes ; lysosomes ; Golgi apparatus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary 1. The endocytic pathway of horseradish peroxidase (HRP) was investigated in the perikarya of cultured neurons by electron microscopy and enzyme cytochemistry. The tracer was observed in endocytic pits and vesicles, endosomes, multivesicular bodies, and lysosomes. It took approximate 15 min for the transfer of HRP from the exterior of the cell to the lysosomes. 2. Monensin induced distension of the Golgi apparatus and formation of intracellular vacuoles. When neurons were incubated with both monensin and HRP for 30 to 120 min, the number of HRP-labeled endosomes was greater than that in the monensin-free group, whereas the reverse was seen for HRP-positive lysosomes. The formation of HRP-positive lysosomes in monensin-treated cells was blocked by 47 to 79%. 3. These results indicate that the intracellular transport of the endocytosed macromolecule is pH dependent. It is also possible that the export of lysosomal enzymes is inhibited by monensin, resulting in an accumulation of the endosomes and a reduction of the lysosomes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Cellular and molecular neurobiology 14 (1994), S. 359-371 
    ISSN: 1573-6830
    Keywords: inhibitory neurotransmitter receptor ; subunit subtype ; development ; photoaffinity labeling ; immunoblotting ; autoradiography
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary 1. The changes in the GABAA/benzodiazepine receptor in chicken brain during development has been studied by using3H-flunitrazepam as the probe for the benzodiazepine modulator site and the antibodies recognizing the receptor protein. In the telencephalon and optic tectum, the proteins of 48, 50, and 51 kD were markedly labeled by3H-flunitrazepam from embryonic day 18 to postnatal days, as revealed by photoaffinity labeling and SDS-PAGE of the brain membranes; the 51-kD protein appeared to be the predominant one in labeling intensity except at embryonic day 18 and postnatal days 14 and 28, whereas the 47- and 50-kD proteins were dominant in the cerebellum. However, the 47- and 48-kD proteins were faintly seen after postnatal day 28 in the three regions examined. 2. Immunoblotting using a monoclonal antibody against the 50- and 51-kD proteins showed that the straining pattern in the developing telecephalon or optic tectum was similar to the 50 kD/51 kD pattern obtained from fluorography. The antibody also stained the 50- and 51-kD proteins in the cerebellum despite the fact that the 51-kD protein was barely seen in the fluorogram. Moreover, the 50-kD protein was recognized by an antiserum raised against a partial sequence of the α1 subunit of the receptor expressed in bacteria. The staining levels for the 50-kd protein by the antiserum on immunoblots of the brain regions were low in embryonic animals but higher during postnatal stages, consistent with that seen in fluorograms. 3. Receptor binding autoradiography using3H-flunitrazepam exhibited that varying degrees of labeling intensity occurred among various brain areas at different ages. High densities of binding were present in the olfactory bulb, paleostriatum, optic tectum, and midbrain. These results support the diversity of the GABAA/benzodiazepine receptor in the vertebrate CNS.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Cellular and molecular neurobiology 15 (1995), S. 451-464 
    ISSN: 1573-6830
    Keywords: CNS regeneration ; development ; ultrastructure ; 2-D gel electrophoresis ; cytoskeletal proteins
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary 1. The developing spinal cords of bullfrogs and transected cords of stage IV tadpoles were subjected to two-dimensional gel electrophoresis and histological analysis. During development, the level of actin,α-tubulin orβ-tubulin in the 7–10th spinal segments increased with time and reached a maximum around stage XIII followed by a decrease, as shown from quantitative assay on protein spots of 2-dimensional gels of cord homogenates. In contrast, the level of 68 kD neurofilament subunit (NF68) was low in tadpoles but high in frog. 2. Following a complete transection made at the level of the 8th spinal segment, the cord tissue of the lesion zone degenerated; regeneration from each cut end then occurred, which lengthened for approximate 0.35 mm by 28 days after transection. The content of actin,α-tubulin andβ-tubulin in the cord within 1–2 mm of the transection site was elevated to 124–192% of control values 7–28 days post-transection, whereas NF68 declined to near non-detectable extent. 3. The regeneration of each cord stump included outgrowth of neuroepithelial cells and nerve fibers, reconstituting a newly regenerated cord segment. Ultrastructural examination revealed that features of the regrowth of fibers and guidance of neuroepithelial cells to the axonal growth resembled that seen in the developing cord. Thus the biochemical and morphological data support that the regeneration of the nervous system recaptulates its developmental events, providing evidence for molecular mechanisms underlying central axonal regeneration.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 49 (1992), S. 166-171 
    ISSN: 0730-2312
    Keywords: neuron culture ; reversible binding ; protein synthesis ; glycosylation ; Golgi apparatus ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Effects of monensin were examined on the intracellular processing of the GABAA/benzodiazepine receptor (GABAA/BZDR) in neuron cultures derived from embryonic chicken brain, using 3H-flunitrazepam as the probe for the benzodiazepine modulator site on the receptor. Incubation of cultures with 0.1 or 1 μM monensin for 3 h blocked the binding of 3H-flunitrazepam by about 18%. Loss of ligand binding was due to a reduction in the number of binding sites, with no significant changes in receptor affinity. The general cellular protein synthesis and glycosylation in the cells were inhibited by 26% and 56%, respectively, in the presence of 1 μM monensin, as detected by assaying the incorporation of 3H-leucine and 3H-galactose. In contrast, an increase was observed for mannose incorporation by the cultures in the presence of the drug. Moreover, the results from in situ trypsinization of the cultures following monensin treatment showed that monensin did not alter the distribution of intracellular and surface receptors. The data suggest that monensin induces the down-regulation of GABAA/BZDR by generating abnormal glycosylation of the receptor and interrupting its transport within the Golgi apparatus, as well as from the Golgi apparatus to the intracellular pool and cell membrane. The galactosylation of receptor proteins may be important for the maturation of the receptor.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 70 (1998), S. 38-48 
    ISSN: 0730-2312
    Keywords: GABAA receptor ; N-glycosylation ; radioligand binding ; in situ trypsinization ; galactosylation ; mannosylation ; immunoblotting ; immunocytochemistry ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The significance of N-linked glycosylation and oligosaccharide processing was examined for the expression of γ-aminobutyric acidA receptor (GABAAR) in cultured neurons derived from chick embryo brains. Incubation of cultures with 5 μg/ml of tunicamycin for 24 h blocked the binding of 3H-flunitrazepam and 3H-muscimol, probes for the benzodiazepine and GABA sites on the receptor, by about 20% and 28%, respectively. The loss of ligand binding was due to a reduction in the number of binding sites with no significant changes in receptor affinity. Light microscopic immunocytochemistry also revealed that the treatment reduced approximately 13% of the intensity of GABAAR immunoreactivity in the neuronal somata. Furthermore, the fraction of intracellular receptors was decreased to 24% from 34% of control in the presence of the agent, as revealed by trypsinization of cells in situ followed by 3H-flunitrazepam binding. The molecular weight of the receptor subunit protein was lowered around 0.5 kDa after tunicamycin treatment, in accordance with that following N-glycosidase F digestion, indicating the blockade of N-linked glycosylation of GABAAR by tunicamycin. Moreover, intense inhibitions of 91% and 44%, respectively, were detected to the general galactosylation and mannosylation in the tunicamycin-treated cells, whereas the protein synthesis was hindered by 13%, through assaying the incorporation of 3H-sugars and 3H-leucine. Nevertheless, treatment with castanospermine or swainsonine (10 μg/ml, 24 h), inhibitors to maturation of oligosaccharides, failed to produce significant changes in the ligand binding. In addition, in situ hybridization analysis showed that these three inhibitors did not perturb the mRNA of GABAAR α1-subunit. The data suggest that tunicamycin causes the downregulation and subcellular redistribution of GABAAR by producing irregularly glycosylated receptors and modifying their localization. Both galactosylation and mannosylation during the process of N-linked glycosylation may be important for the functional expression and intracellular transport of GABAAR. J. Cell. Biochem. 70:38-48, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
  • 7
    Publication Date: 1994-08-01
    Print ISSN: 0272-4340
    Electronic ISSN: 1573-6830
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1995-08-01
    Print ISSN: 0272-4340
    Electronic ISSN: 1573-6830
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1992-08-01
    Print ISSN: 0272-4340
    Electronic ISSN: 1573-6830
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2002-01-01
    Print ISSN: 0730-2312
    Electronic ISSN: 1097-4644
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...