ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-0867
    Keywords: farmyard manure ; maize ; nitrogen ; phosphorus ; rice ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Field experiments with rice-wheat rotation were conducted during five consecutive years on a coarse-textured low organic matter soil. By amending the soil with 12t FYM ha−1, the yield of wetland rice in the absence of fertilizers was increased by 32 per cent. Application of 80 kg N ha−1 as urea could increase the grain yield of rice equivalent to 120 kg N ha−1 on the unamended soil. Although the soil under test was low in Olsen's P, rice did not respond to the application of phosphorus on both amended and unamended soils. For producing equivalent grain yield, fertilizer requirement of maize grown on soils amended with 6 and 12 t FYM ha−1 could be reduced, respectively to 50 and 25 per cent of the dose recommended for unamended soil (120 kg N + 26.2 kg P + 25 kg K ha−1). Grain yield of wheat grown after rice on soils amended with FYM was significantly higher than that obtained on unamended soil. In contrast, grain yield of wheat which followed maize did not differ significantly on amended or unamended soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-0867
    Keywords: ammonia volatilization ; green manure ; inhibitor ; NBPT ; rice ; urea hydrolysis ; wheat straw
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Using a forced-draft chamber technique, the suppression of NH3 volatilization losses by applying N-(n-butyl) thiophosphoric triamide (NBPT) was studied in an alkaline sandy loam soil amended with green manure or wheat straw. Applied urea was completely hydrolysed in 12, 8 and 6 days in unamended, green manure and wheat straw amended soil, respectively. By applying 0.5% (w/w of urea) NBPT, complete hydrolysis of urea was delayed up to 16 days in the unamended soil, whereas in wheat straw amended soil urea hydrolysis was completed by the 12th day even when it was treated with 2% NBPT. Applied at 1 or 2% level, NBPT delayed the NH3 volatilization to the 4th day after application of urea in green manure or wheat straw amended soil. Hydrolysis of urea was more effectively retarded by applying NBPT in the unamended soil than in soil amended with green manure or wheat straw. In the unamended soil, 7.1% of the applied urea was lost through NH3 volatilization. The losses were reduced to 1.2 and 0.7% by applying 0.5 and 1% NBPT, respectively. Enhanced NH3 volatilization caused by the green manure or wheat straw was counteracted by applying NBPT.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 47 (1996), S. 243-250 
    ISSN: 1573-0867
    Keywords: fertilizer value ; nitrogen ; phosphorus ; poultry manure ; urea ; wetland rice
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Poultry manure applied alone or in combination with urea at different N levels was evaluated as a N source for wetland rice grown in a Fatehpur loamy sand soil. Residual effects were studied on wheat which followed rice every year during the three cropping cycles. In the first year, poultry manure did not perform better than urea but by the third year, when applied in quantities sufficient to supply 120 and 180 kg N ha−1, it produced significantly more rice grain yield than the same rates of N as urea. Poultry manure sustained the grain yield of rice during the three years while the yield decreased with urea. Apparent N recovery by rice decreased from 45 to 28% during 1987 to 1989 in the case of urea, but it remained almost the same (35, 33 and 37%) for poultry manure. Thus, urea N values of poultry manure calculated from yield or N uptake data following two different approaches averaged 80, 112 and 127% in 1987, 1988 and 1989, respectively. Poultry manure and urea applied in 1:1 ratio on N basis produced yields in between the yields from the two sources applied alone. After three cycles of rice-wheat rotation, the organic matter in the soil increased with the amount of manure applied to a plot. Olsen available P increased in soils amended with poultry manure. A residual effect of poultry manure applied to rice to supply 120 or 180 kg N ha−1 was observed in the wheat which followed rice and it was equivalent to 40 kg N ha−1 plus some P applied directly to wheat.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 18 (1988), S. 201-212 
    ISSN: 1573-0867
    Keywords: Dicyandiamide ; large urea granule ; urea hydrolysis ; nitrite accumulation ; liming ; nitrification inhibitor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A laboratory incubation experiment was conducted to gain a better understanding of N transformations which occur near large urea granules in soil and the effects of dicyandiamide (DCD), nitrifier activity and liming. Soil cores containing a layer of urea were used to provide a one-dimensional approach and to facilitate sampling. A uniform layer of 2 g urea or urea + DCD was placed in the centre of a 20 cm-long soil core within PVC tubing. DCD was mixed with urea powder at 50 mg kg−1 urea and enrichment of soil with nitrifiers was accomplished by preincubating Conestogo silt loam with 50 mg NH 4 + -N kg−1 soil. Brookston clay (pH 5.7) was limited with CaCO3 to increase the pH to 7.3. The cores were incubated at 15°C and, after periods of 10, 20, 35 and 45 days, were separated into 1-cm sections. The distribution of N species was similar on each side of the urea layer at each sampling. The pH and NH 4 + (NH3) concentration were very high near the urea layer but decreased sharply with distance from it. DCD did not influence urea hydrolysis significantly. Liming of Brookston clay increased urea hydrolysis. The rate of urea hydrolysis was greater in Conestogo silt loam than limed Brookston clay. Nitrite accumulate was relatively small with all the treatments and occurred near the urea layer (0–4 cm) where pH and NH 4 + (NH3) concentration were high. The nitrification occurred in the zone where NH 4 + (NH3) concentration was below 1000µgN g−1 and soil pH was below 8.0 and 8.7 in Brookston and Conestogo soils, respectively. DCD reduced the nitrifier activity (NA) in soil thereby markedly inhibiting nitrification of NH 4 + . Nitrification was increased significantly with liming of the Brookston soil or nitrifier enrichment of the Conestogo soil. There was a significant increase in NA during the nitrification of urea-N. The (NO 2 − + NO 3 − )-N concentration peaks coincided with the NA peaks in the soil cores. A practical implication of this work is that large urea granules will not necessarily result in NO 2 − phytotoxicity when applied near plants. A placement depth of about 5 cm below the soil surface may preclude NH3 loss from large urea granules. DCD is a potential nitrification inhibitor for use with large urea granules or small urea granules placed in nests.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-0867
    Keywords: Band placement ; barley ; cereal grains ; fall-applied N ; fertilizer efficiency ; large urea granules ; LUG ; method of placement ; nest placement ; nitrification ; time of application ; urea fertilizer ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In North America where the climate is cool enough only one crop is grown yearly, N fertilizers are sometimes applied in the previous fall rather than in the spring for fall- or spring-sown cereal grains. However, in areas where snow accumulates in winter, fall application of N fertilizers is generally inferior to spring application. Substantial nitrification takes place in winter and subsequent N loss occurs primarily in early spring by denitrification after the snow melt. Immobilization of N is also greater with fall- than spring-applied N fertilizers. Nitrogen is more efficiently retained in the soil as NH4 and thus more effectively used by plants if formation of nitrite (NO2) and NO3 is reduced or prevented by inhibiting nitrification. The nitrification is reduced when urea is placed in bands, because of high pH, ammonia concentration and osmotic pressure in the soil. The rate of nitrification is further reduced when urea is placed in widely-spaced nests (a number of urea prills placed together at a point below the soil surface) or as large urea granules (LUG) by reducing contact between the nitrifying bacteria and the NH4 released upon urea hydrolysis. A further reduction in nitrification from LUG can be obtained by addition of chemical nitrification inhibitors (such as dicyandiamide (DCD)) to LUG. The concentration of a chemical inhibitor required to suppress nitrification decreases with increasing granule size. The small soil-fertilizer interaction zone with placement of urea in nests or as LUG also reduces immobilization of fertilizer N, especially in soils amended with crop residues. The efficiency of fall-applied N is improved greatly by placing urea in nests or as LUG for small cereal grains. Yields of spring-sown barley from nests of urea or LUG applied in the fall are close to those obtained with spring-applied urea prills incorporated into the soil. Delaying urea application until close to freeze-up is also improved the efficiency of fall-applied N. This increased effectiveness of urea nests or LUG is due to slower nitrification, lower N loss over the winter by denitrification, and reduced immobilization of applied N. Fall application of LUG containing low rates of DCD slows nitrification, reduces over-winter N loss, and causes further improvement in yield and N uptake of winter wheat compared to urea as LUG alone in experiments in Ontario; in other experiments in Alberta there is no yield advantage from using a nitrification inhibitor with LUG for barley. Placement of LUG or nests of urea in soil is an agronomically sound practice for reducing N losses. This practice can eliminate or reduce the amount of nitrification inhibitor necessary to improve the efficiency of fall-applied urea where losses of mineral N are a problem. The optimum size of urea nest or LUG, and optimum combination of LUG and an efficient nitrification inhibitor need to be determined for different crops under different agroclimatic conditions. The soil (texture, CEC, N status), plant (winter or spring crop, crop geometry, crop growth duration and cultivar) and climatic (temperature, amount and distribution of precipitation) factors should be taken into account during field evaluation of LUG. There is a need to conduct region-specific basic research to understand mechanisms and magnitudes of N transformations and N losses in a given ecosystem. Prediction of nitrification from LUG or urea nests in various environments is needed. In nitrification inhibition studies with LUG and chemical nitrification inhibitors, measurements of nitrifier activity will be useful. Finally, there is need for development of applicators for mechanical placement of LUG or urea prills in widely-spaced nests in soil.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 28 (1991), S. 179-184 
    ISSN: 1573-0867
    Keywords: Ammonium sulphate ; leaching ; nitrogen ; potassium nitrate ; urea ; lowland rice
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Application of 120 kg urea-N ha−1 to lowland rice grown in a highly percolating soil in 10 equal split doses at weekly intervals rather than in 3 equal split doses at 7, 21 and 42 days after transplanting did not significantly increase rice grain yield and N uptake. Results suggest that leaching losses of N were not substantial. In lysimeters planted with rice, leaching losses of N as urea, NH 4 + , and NO 3 - beyond 30 cm depth of a sandy loam soil for 60 days were about 6% of the total urea-N and 3% of the total ammonium sulphate-N applied in three equal split doses. Application of urea even in a single dose at transplanting did not result in more N leaching losses (13%) compared to those observed from potassium nitrate (38%) applied in three split doses. Nitrogen contained in potassium nitrate was readily leached during the first week of its application. More N was lost from the first dose of N applied at transplanting than from the second or third dose. Data pertaining to yield, N uptake and per cent N recovery by rice revealed that the performance of different fertilizer treatments was inversely related to susceptibility of N to leaching.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Nutrient cycling in agroecosystems 17 (1988), S. 147-151 
    ISSN: 1573-0867
    Keywords: time of zinc application ; wheat ; zinc sulphate ; zinc oxide ; zinc uptake
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Field experiments with wheat were conducted for two years on flood plain alluvial soils to study the effectiveness of soil application of zinc sulphate and zinc oxide at 0, 15, 45, 60, 75 and 90 days after sowing. Yield and zinc uptake of wheat increased significantly with the application of zinc. Delaying the application of both zinc sulphate and zinc oxide up to 45 days of sowing did not adversly affect the zinc nutrition of wheat. However, delaying the application for 75 or 90 days after sowing eliminated the response. Zinc sulphate, when applied within 60 days of sowing performed better than zinc oxide. In a laboratory study, zinc sulphate maintained a higher level of zinc in the soil solution than zinc oxide at least over a 3-week period.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2008-03-01
    Print ISSN: 0361-5995
    Electronic ISSN: 1435-0661
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019
    Description: Abstract Agricultural productivity relies on a wide range of ecosystem services provided by the soil biota. Sustainable management practices, such as tillage and residue management, can influence structure and function of the soil microbiota, with direct consequences for the associated ecosystem services. Although there is increasing evidence that different tillage regimes alter the soil biological indices, we only have a limited understanding of their temporal changes in a rice (Oryza sativa L.) ‐ wheat (Triticum aestivum L.) cropping system. We evaluated the effects of combinations of tillage, crop residue management and green manuring on soil biological indicators after five years of the practicing rice‐wheat system (RWS). Four main plot treatments in rice included: (1) PTRW0, puddled transplanted rice with no wheat straw retained, (2) PTRW25, puddled transplanted rice with 25% anchored wheat stubbles retained, (3) PTRW0 + Sesbania aculeate L. green manure (GM), and (4) PTRW25+GM, puddled transplanted rice with 25% anchored wheat stubbles retained+ GM. There were three sub‐plot treatments in the subsequent wheat crop: (1) CTWR0, conventional tillage wheat with rice residue removed, (2) ZTWR0, zero tillage wheat with rice residue removed and (3) ZTWR100, ZTW with 100% rice residue retained as mulch. The PTRW25+GM treatment, followed by ZTWR100, significantly increased soil microbial biomass carbon, basal soil respiration, microbial quotient and mineralization quotient measured during wheat‐growing season. These biological indicators were higher at vigorous vegetative wheat growth stage than at flowering stage and decreased at maturity. The principal component analysis of the assayed variables showed that all the variables significantly contributed to the variability in parameters examined and were more related to maximum tillering stage of wheat growth than to maturity or at sowing of wheat. Three highly effective biological indicators were microbial biomass carbon, microbial quotient and mineralization quotient, which responded significantly to changes in tillage and residue management practices in the RWS. We conclude that crop residues and green manure have significant to improve soil biochemical processes by improving soil organic carbon and soil biological indicators in rice‐wheat cropping system. This article is protected by copyright. All rights reserved.
    Print ISSN: 0266-0032
    Electronic ISSN: 1475-2743
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...