ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2020-11-18
    Description: Objectives Evaluation of intestinal perfusion remains subjective and depends on the surgeon´s individual experience. Intraoperative quality assessment of tissue perfusion with indocyanine green (ICG) fluorescence using a near-infrared camera system has been described in different ways and for different indications. The aim of the present study was to evaluate fluorescent imaging (FI) in the quantitative assessment of intestinal perfusion in a gastric tube model in pigs and to compare the results to results obtained with florescent microspheres (FM), the gold standard for tissue perfusion. Methods Seven pigs (56.0±3.0 kg), both males and females, underwent gastric tube formation after transection and ligation of the gastric arteries, except the right gastroepiploic artery, to avoid collateral blood flow. After baseline assessment (T0), hypotension (T1) was induced by propofol (Karampinis et al 2017) (〈 60 mmHg). Then, propofol was paused to obtain normotension (T2, Mean arterial pressure (MAP) 60–90 mmHg). Finally, hypertension (T3, MAP〉90 mmHg) was induced by norepinephrine. Measurements were performed in three regions of interest (ROIs) under standardized conditions: the fundus (D1), corpus (D2), and prepyloric area (D3). Hemodynamic parameters and transit-time flow measurement (TTFM) in the right gastroepiploic artery were continuously assessed. FI, FM and the partial pressure of tissue oxygen (TpO2) were quantified in each ROI. Results The study protocol could successfully be performed during stable hemodynamics. Flow in the gastroepiploic artery measured by transit time flow measurement (TTFM) was related to hemodynamic changes between the measurements, indicating improved blood flow with increasing MAP. The distal part of the gastric tube (D1) showed significantly (p
    Electronic ISSN: 1932-6203
    Topics: Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-04-28
    Description: Dynamic parameters of preload have been widely recommended to guide fluid therapy based on the principle of fluid responsiveness and with regard to cardiac output. An equally important aspect is however to also avoid volume-overload. This accounts particularly when capillary leakage is present and volume-overload will promote impairment of microcirculatory blood flow. The aim of this study was to evaluate, whether an impairment of intestinal microcirculation caused by volume-load potentially can be predicted using pulse pressure variation in an experimental model of ischemia/reperfusion injury. The study was designed as a prospective explorative large animal pilot study. The study was performed in 8 anesthetized domestic pigs (German landrace). Ischemia/reperfusion was induced during aortic surgery. 6 h after ischemia/reperfusion-injury measurements were performed during 4 consecutive volume-loading-steps, each consisting of 6 ml kg−1 bodyweight−1. Mean microcirculatory blood flow (mean Flux) of the ileum was measured using direct laser-speckle-contrast-imaging. Receiver operating characteristic analysis was performed to determine the ability of pulse pressure variation to predict a decrease in microcirculation. A reduction of ≥ 10% mean Flux was considered a relevant decrease. After ischemia–reperfusion, volume-loading-steps led to a significant increase of cardiac output as well as mean arterial pressure, while pulse pressure variation and mean Flux were significantly reduced (Pairwise comparison ischemia/reperfusion-injury vs. volume loading step no. 4): cardiac output (l min−1) 1.68 (1.02–2.35) versus 2.84 (2.15–3.53), p = 0.002, mean arterial pressure (mmHg) 29.89 (21.65–38.12) versus 52.34 (43.55–61.14), p 
    Electronic ISSN: 2045-2322
    Topics: Natural Sciences in General
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...