ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Monograph available for loan
    Monograph available for loan
    Amsterdam : Elsevier
    Call number: M 18.91612
    Description / Table of Contents: Front Cover -- Machine Learning Techniques for Space Weather -- Copyright -- Contents -- Contributors -- Introduction -- Machine Learning and Space Weather -- Scope and Structure of the Book -- Acknowledgments -- References -- Part I: Space Weather -- Chapter 1: Societal and Economic Importance of Space Weather -- 1 What is Space Weather? -- 2 Why Now? -- 3 Impacts -- 3.1 Geomagnetically Induced Currents -- 3.2 Global Navigation Satellite Systems -- 3.3 Single-Event Effects -- 3.4 Other Radio Systems -- 3.5 Satellite Drag -- 4 Looking to the Future -- 5 Summary and Conclusions -- Acknowledgments -- References -- Chapter 2: Data Availability and Forecast Products for Space Weather -- 1 Introduction -- 2 Data and Models Based on Machine Learning Approaches -- 3 Space Weather Agencies -- 3.1 Government Agencies -- 3.1.1 NOAA's Data and Products -- 3.1.2 NASA -- 3.1.3 European Space Agency -- 3.1.4 The US Air Force Weather Wing -- 3.2 Academic Institutions -- 3.2.1 Kyoto University, Japan -- 3.2.2 Rice University, USA -- 3.2.3 Laboratory for Atmospheric and Space Physics, USA -- 3.3 Commercial Providers -- 3.4 Other Nonprofit, Corporate Research Agencies -- 3.4.1 USGS -- 3.4.2 JHU Applied Physics Lab -- 3.4.3 US Naval Research Lab -- 3.4.4 Other International Service Providers -- 4 Summary -- References -- Part II: Machine Learning -- Chapter 3: An Information-Theoretical Approach to Space Weather -- 1 Introduction -- 2 Complex Systems Framework -- 3 State Variables -- 4 Dependency, Correlations, and Information -- 4.1 Mutual Information as a Measure of Nonlinear Dependence -- 4.2 Cumulant-Based Cost as a Measure of Nonlinear Dependence -- 4.3 Causal Dependence -- 4.4 Transfer Entropy and Redundancy as Measures of Causal Relations -- 4.5 Conditional Redundancy -- 4.6 Significance of Discriminating Statistics
    Description / Table of Contents: 4.7 Mutual Information and Information Flow -- 5 Examples From Magnetospheric Dynamics -- 6 Significance as an Indicator of Changes in Underlying Dynamics -- 6.1 Detecting Dynamics in a Noisy System -- 6.2 Cumulant-Based Information Flow -- 7 Discussion -- 8 Summary -- Acknowledgments -- References -- Chapter 4: Regression -- 1 What is Regression? -- 2 Learning From Noisy Data -- 2.1 Prediction Errors -- 2.2 A Probabilistic Set-Up -- 2.3 The Least Squares Method for Linear Regression -- 2.3.1 The Least Squares Method and the Best Linear Predictor -- 2.3.2 The Least Squares Method and the Maximum Likelihood Principle -- 2.3.3 A More General Approach and Higher-Order Predictors -- 2.4 Overfitting -- 2.4.1 The Order Selection Problem -- Error Decomposition: The Bias Versus Variance Trade-Off -- Some Popular Order Selection Criteria -- 2.4.2 Regularization -- 2.5 From Point Predictors to Interval Predictors -- 2.5.1 Distribution-Free Interval Predictors -- 2.6 Probability Density Estimation -- 3 Predictions Without Probabilities -- 3.1 Approximation Theory -- Dense Sets -- Best Approximator -- 3.1.1 Neural Networks -- The Backpropagation Algorithm: High-Level Idea -- Multiple Layers Networks (Deep Networks) -- 4 Probabilities Everywhere: Bayesian Regression -- 4.1 Gaussian Process Regression -- 5 Learning in the Presence of Time: Identification of Dynamical Systems -- 5.1 Linear Time-Invariant Systems -- 5.2 Nonlinear Systems -- References -- Chapter 5: Supervised Classification: Quite a Brief Overview -- 1 Introduction -- 1.1 Learning, Not Modeling -- 1.2 An Outline -- 2 Classifiers -- 2.1 Preliminaries -- 2.2 The Bayes Classifier -- 2.3 Generative Probabilistic Classifiers -- 2.4 Discriminative Probabilistic Classifiers -- 2.5 Losses and Hypothesis Spaces -- 2.5.1 0-1 Loss -- 2.5.2 Convex Surrogate Losses
    Description / Table of Contents: 2.5.3 Particular Surrogate Losses -- 2.6 Neural Networks -- 2.7 Neighbors, Trees, Ensembles, and All that -- 2.7.1 k Nearest Neighbors -- 2.7.2 Decision Trees -- 2.7.3 Multiple Classifier Systems -- 3 Representations and Classifier Complexity -- 3.1 Feature Transformations -- 3.1.1 The Kernel Trick -- 3.2 Dissimilarity Representation -- 3.3 Feature Curves and the Curse of Dimensionality -- 3.4 Feature Extraction and Selection -- 4 Evaluation -- 4.1 Apparent Error and Holdout Set -- 4.2 Resampling Techniques -- 4.2.1 Leave-One-Out and k-Fold Cross-Validation -- 4.2.2 Bootstrap Estimators -- 4.2.3 Tests of Significance -- 4.3 Learning Curves and the Single Best Classifier -- 4.4 Some Words About More Realistic Scenarios -- 5 Regularization -- 6 Variations on Standard Classification -- 6.1 Multiple Instance Learning -- 6.2 One-Class Classification, Outliers, and Reject Options -- 6.3 Contextual Classification -- 6.4 Missing Data and Semisupervised Learning -- 6.5 Transfer Learning and Domain Adaptation -- 6.6 Active Learning -- Acknowledgments -- References -- Part III: Applications -- Chapter 6: Untangling the Solar Wind Drivers of the Radiation Belt: An Information Theoretical Approach -- 1 Introduction -- 2 Data Set -- 3 Mutual Information, Conditional Mutual Information, and Transfer Entropy -- 4 Applying Information Theory to Radiation Belt MeV Electron Data -- 4.1 Radiation Belt MeV Electron Flux Versus Vsw -- 4.2 Radiation Belt MeV Electron Flux Versus nsw -- 4.3 Anticorrelation of Vsw and nsw and Its Effect on Radiation Belt -- 4.4 Ranking of Solar Wind Parameters Based on Information Transfer to Radiation Belt Electrons -- 4.5 Detecting Changes in the System Dynamics -- 5 Discussion -- 5.1 Geo-Effectiveness of Solar Wind Velocity -- 5.2 nsw and Vsw Anticorrelation
    Description / Table of Contents: 5.3 Geo-Effectiveness of Solar Wind Density -- 5.4 Revisiting the Triangle Distribution -- 5.5 Improving Models With Information Theory -- 5.5.1 Selecting Input Parameters -- 5.5.2 Detecting Nonstationarity in System Dynamics -- 5.5.3 Prediction Horizon -- 6 Summary -- Acknowledgments -- References -- Chapter 7: Emergence of Dynamical Complexity in the Earth's Magnetosphere -- 1 Introduction -- 2 On Complexity and Dynamical Complexity -- 3 Coherence and Intermittent Features in Time Series Geomagnetic Indices -- 4 Scale-Invariance and Self-Similarity in Geomagnetic Indices -- 5 Near-Criticality Dynamics -- 6 Multifractional Features and Dynamical Phase Transitions -- 7 Summary -- Acknowledgments -- References -- Chapter 8: Applications of NARMAX in Space Weather -- 1 Introduction -- 2 NARMAX Methodology -- 2.1 Forward Regression Orthogonal Least Square -- 2.2 The Noise Model -- 2.3 Model Validation -- 2.4 Summary -- 3 NARMAX and Space Weather Forecasting -- 3.1 Geomagnetic Indices -- 3.1.1 SISO Dst Index -- 3.1.2 Continuous Time Dst model -- 3.1.3 MISO Dst -- 3.1.4 Kp Index -- 3.2 Radiation Belt Electron Fluxes -- 3.2.1 GOES High Energy -- 3.2.2 SNB3GEO Comparison With NOAA REFM -- 3.2.3 GOES Low Energy -- 3.3 Summary of NARMAX Models -- 4 NARMAX and Insight Into the Physics -- 4.1 NARMAX Deduced Solar Wind-Magnetosphere Coupling Function -- 4.2 Identification of Radiation Belt Control Parameters -- 4.2.1 Solar Wind Density Relationship With Relativistic Electrons at GEO -- 4.2.2 Geostationary Local Quasilinear Diffusion vs. Radial Diffusion -- 4.3 Frequency Domain Analysis of the Dst Index -- 5 Discussions and Conclusion -- References -- Chapter 9: Probabilistic Forecasting of Geomagnetic Indices Using Gaussian Process Models -- 1 Geomagnetic Time Series and Forecasting -- 2 Dst Forecasting
    Description / Table of Contents: 2.1 Models and Algorithms -- 2.2 Probabilistic Forecasting -- 3 Gaussian Processes -- 3.1 Gaussian Process Regression: Formulation -- 3.2 Gaussian Process Regression: Inference -- 4 One-Hour Ahead Dst Prediction -- 4.1 Data Source: OMNI -- 4.2 Gaussian Process Dst Model -- 4.3 Gaussian Process Auto-Regressive (GP-AR) -- 4.4 GP-AR With eXogenous Inputs (GP-ARX) -- 5 One-Hour Ahead Dst Prediction: Model Design -- 5.1 Choice of Mean Function -- 5.2 Choice of Kernel -- 5.3 Model Selection: Hyperparameters -- 5.3.1 Grid Search -- 5.3.2 Coupled Simulated Annealing -- 5.3.3 Maximum Likelihood -- 5.4 Model Selection: Auto-Regressive Order -- 6 GP-AR and GP-ARX: Workflow Summary -- 7 Practical Issues: Software -- 8 Experiments and Results -- 8.1 Model Selection and Validation Performance -- 8.2 Comparison of Hyperparameter Selection Algorithms -- 8.3 Final Evaluation -- 8.4 Sample Predictions With Error Bars -- 9 Conclusion -- References -- Chapter 10: Prediction of MeV Electron Fluxes and Forecast Verification -- 1 Relativistic Electrons in Earth's Outer Radiation Belt -- 1.1 Source, Loss, Transport, and Acceleration, Variation -- 2 Numerical Techniques in Radiation Belt Forecasting -- 3 Relativistic Electron Forecasting and Verification -- 3.1 Forecast Verification -- 3.2 Relativistic Electron Forecasting -- 4 Summary -- References -- Chapter 11: Artificial Neural Networks for Determining Magnetospheric Conditions -- 1 Introduction -- 2 A Brief Review of ANNs -- 3 Methodology and Application -- 3.1 The DEN2D Model -- 4 Advanced Applications -- 4.1 The DEN3D Model -- 4.2 The Chorus and Hiss Wave Models -- 4.3 Radiation Belt Flux Modeling -- 5 Summary and Discussion -- Acknowledgments -- References -- Chapter 12: Reconstruction of Plasma Electron Density From Satellite Measurements Via Artificial Neural Networks
    Description / Table of Contents: 1 Overview
    Type of Medium: Monograph available for loan
    Pages: xviii, 433 Seiten , Illustrationen
    ISBN: 978-0-12-811788-0
    Classification:
    Geophysics
    Language: English
    Location: Upper compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillan Magazines Ltd.
    Nature 393 (1998), S. 342-344 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The oldest documented, relationship between the number of sunspots (the solar cycle) and terrestrial effects is the increased frequency of aurorae in the period immediately after the solar maximum (the peak of the number of sunspots). This correlation is, however, based only on observations of ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-09-06
    Description: Learning from successful applications of methods originating in statistical mechanics, com- plex systems science, or information theory in one scientific field (e.g., atmospheric physics or climatology) can provide important insights or conceptual ideas for other areas (e.g., space sciences) or even stimulate new research questions and approaches. For instance, quantification and attribution of dynamical complexity in output time series of nonlinear dynamical systems is a key challenge across scientific disciplines. Especially in the field of space physics, an early and accurate detection of characteristic dissimilarity between nor- mal and abnormal states (e.g., pre-storm activity vs. magnetic storms) has the potential to vastly improve space weather diagnosis and, consequently, the mitigation of space weather hazards. This review provides a systematic overview on existing nonlinear dynamical systems- based methodologies along with key results of their previous applications in a space physics context, which particularly illustrates how complementary modern complex systems ap- proaches have recently shaped our understanding of nonlinear magnetospheric variability. The rising number of corresponding studies demonstrates that the multiplicity of nonlin- ear time series analysis methods developed during the last decades offers great potentials for uncovering relevant yet complex processes interlinking different geospace subsystems, variables and spatiotemporal scales.
    Description: Published
    Description: 38
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-04-04
    Description: Osteoporosis and sarcopenia are common comorbid diseases, yet their shared mechanisms are largely unknown. We found that genetic variation near FAM210A was associated, through large genome-wide association studies, with fracture, bone mineral density (BMD), and appendicular and whole body lean mass, in humans. In mice, Fam210a was expressed in muscle mitochondria and cytoplasm, as well as in heart and brain, but not in bone. Grip strength and limb lean mass were reduced in tamoxifen-inducible Fam210a homozygous global knockout mice (TFam210a−/−), and in tamoxifen-inducible Fam210 skeletal muscle cell-specific knockout mice (TFam210aMus−/−). Decreased BMD, bone biomechanical strength, and bone formation, and elevated osteoclast activity with microarchitectural deterioration of trabecular and cortical bones, were observed in TFam210a−/− mice. BMD of male TFam210aMus−/− mice was also reduced, and osteoclast numbers and surface in TFam210aMus−/− mice increased. Microarray analysis of muscle cells from TFam210aMus−/− mice identified candidate musculoskeletal modulators. FAM210A, a novel gene, therefore has a crucial role in regulating bone structure and function, and may impact osteoporosis through a biological pathway involving muscle as well as through other mechanisms.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-10-01
    Print ISSN: 2169-9380
    Electronic ISSN: 2169-9402
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-02-01
    Description: Nature Geoscience 6, 125 (2013). doi:10.1038/ngeo1679 Authors: Clint Scott, Noah J. Planavsky, Chris L. Dupont, Brian Kendall, Benjamin C. Gill, Leslie J. Robbins, Kathryn F. Husband, Gail L. Arnold, Boswell A. Wing, Simon W. Poulton, Andrey Bekker, Ariel D. Anbar, Kurt O. Konhauser & Timothy W. Lyons The redox state of the oceans strongly influences the concentration of dissolved trace metals in sea water. Changes in the redox state of the oceans are thought to have limited the availability of some trace metals in the past, particularly during the Proterozoic eon, 2,500 to 542 million years ago. Of these trace metals, zinc (Zn) is of particular importance to eukaryotic organisms, because it is essential for a wide range of basic cellular functions. It has been suggested that during the Proterozoic, marine environments were broadly euxinic—that is, anoxic and sulphidic—which would have resulted in low Zn availability. Low Zn bioavailability could therefore be responsible for an observed delay in eukaryote diversification. Here we present a compilation of Zn abundance data from black shales deposited under euxinic conditions from the Precambrian time to the present. We show that these values track first-order trends in seawater Zn availability. Contrary to previous estimates, we find that Zn concentrations during the Proterozoic were similar to modern concentrations, supporting recent studies that call for limited euxinia at this time. Instead, we propose that predominantly anoxic and iron-rich deep oceans, combined with large hydrothermal fluxes of Zn, maintained high levels of dissolved Zn throughout the oceans. We thus suggest that the protracted diversification of eukaryotic Zn-binding proteins was not a result of Znbiolimitation.
    Print ISSN: 1752-0894
    Electronic ISSN: 1752-0908
    Topics: Geosciences
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-09-20
    Print ISSN: 0038-6308
    Electronic ISSN: 1572-9672
    Topics: Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2008-01-01
    Electronic ISSN: 1471-2091
    Topics: Chemistry and Pharmacology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-08-25
    Print ISSN: 0004-637X
    Electronic ISSN: 1538-4357
    Topics: Physics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-02-15
    Print ISSN: 0004-637X
    Electronic ISSN: 1538-4357
    Topics: Physics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...