ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1993-04-01
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1994-06-01
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1993-10-01
    Print ISSN: 0032-079X
    Electronic ISSN: 1573-5036
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 163 (1994), S. 267-277 
    ISSN: 1573-5036
    Keywords: cultivar ; critical root length density ; field experiment ; nitrate ; N utilization ; root growth ; uptake rate ; Zea mays
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In a 2-year field study conducted on a high fertilized Gleyic Luvisol in Stuttgart-Hohenheim significant differences among 10 maize cultivars were observed in soil nitrate depletion. The different capability of the cultivars to utilize nitrate particularly from the subsoil was positively correlated with (a) shoot N uptake at maturity, and (b) root length density (Lv) in the subsoil layers at silking. “Critical root length densities” for nitrate uptake were estimated by (a) calculating uptake rates per unit root length (U), (b) subsequent calculation of needed nitrate concentration in soil solution (C1) to sustain calculated U according to the Baldwin formula, and (c) reducing measured Lv and proportionate increase of U until needed concentration equaled measured concentration. Uptake rate generally increased with soil depth. “Critical root length densities” for cultivar Brummi (high measured root length densities and soil nitrate depletion) at 60–90 cm depth ranged from 7 % (generative growth) to 28 % (vegetative growth) of measured Lv Measured root length density of each other cultivar was higher than “critical root length density” for Brummi indicating that the root system of each cultivar examined would have been able to ensure N uptake of Brummi. Positive relationships between root length density and nitrate utilization as indicated by correlation analysis therefore could not be explained by model calculations. This might be due to simplifying assumptions made in the model, which are in contrast to non-ideal uptake conditions in the field, namely irregular distribution of roots and nitrate in the soil, limited root/soil contact, and differences between root zones in uptake activity. It is concluded from the field experiment that growing of cultivars selected for high N uptake-capacity of the shoots combined with “high” root length densities in the subsoil may improve the utilization of a high soil nitrate supply.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-5036
    Keywords: cultivar ; nitrate ; nitrate leaching ; N utilization ; Zea mays
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In a 2-year field experiment conducted on a Gleyic Luvisol in Stuttgart-Hohenheim one experimental and nine commercial maize cultivars were compared for their ability to utilize soil nitrate and to reduce related losses of nitrate through leaching. Soil nitrate was monitored periodically in CaCl2 extracts and in suction cup water. Nitrate concentrations in suction water were generally higher than in CaCl2 extracts. Both methods revealed that all cultivars examined were able to extract nitrate down to a soil depth of at least 120 cm (1988 season) or 150 cm (1987 season). Significant differences among the cultivars existed in nitrate depletion particularly in the subsoil. At harvest, residual nitrate in the upper 150 cm of the profile ranged from 73–110 kg N ha−1 in 1987 and from 59–119 kg N ha−1 in 1988. Residual nitrate was closely correlated with nitrate losses by leaching because water infiltration at 120 cm soil depth started 4 weeks after harvest (1987) or immediately after harvest (1988) and continued until early summer of the following year. The calculated amount of nitrate lost by leaching was strongly influenced by the method of calculation. During the winter of 1987/88 nitrate leaching ranged from 57–84 kg N ha−1 (suction cups) and 40–55 kg N ha−1 (CaCl2 extracts), respectively. The corresponding values for the winter of 1988/89 were 47–79 and 20–39 kg N ha−1, respectively. ei]Section editor: B E Clothier
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 155-156 (1993), S. 293-296 
    ISSN: 1573-5036
    Keywords: efficiency ; genotypic differences ; phosphorus ; Triticum aestivum ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract In an attempt to evaluate whether breeding and selection for high yielding capacity did change the P requirements of modern wheat cultivars, the response of two wheat cultivars to different levels of P supply was investigated. A traditional cultivar ("Peragis") and a modern cultivar ("Cosir") were cultivated in a C-loess low in available P and high in CaCO3 in 120 cm high PVC pots. Shoot and root growth at different developmental stages was compared. The grain yield of the modern cultivar Cosir was higher at limiting and non-limiting P supply and, therefore, this cultivar can be considered as more P-efficient than the traditional cultivar. From the results it can be concluded that the main factors contributing to the higher P efficiency of the modern cultivar are (i) efficient use of assimilates for root growth characteristics which enhance P acquisition: smaller root diameter, and longer root hairs, (ii) efficient remobilization of P from vegetative plant organs to the grains, and (iii) lower P requirement for grain yield formation because of lower ear number per plant but higher grain number per ear.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...