ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 1993-06-01
    Print ISSN: 1436-3240
    Electronic ISSN: 1436-3259
    Topics: Architecture, Civil Engineering, Surveying , Energy, Environment Protection, Nuclear Power Engineering , Geography , Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Stochastic environmental research and risk assessment 7 (1993), S. 102-108 
    ISSN: 1436-3259
    Keywords: Sedimentation ; probability density function ; synthetic study ; development
    Source: Springer Online Journal Archives 1860-2000
    Topics: Architecture, Civil Engineering, Surveying , Energy, Environment Protection, Nuclear Power Engineering , Geography , Geosciences
    Notes: Abstract An important problem in sedimentation analysis is the development of a channel section that preserves, as best as possible, the current sedimentation regime even though the flood frequency tendencies have been altered due to land development within the catchment. In order to accomplish this task, a methodology is needed that estimates sediment transport capacity for various channel configurations. Such a procedure is described which allows the computation of the total sediment transport capacity for each of several T-year return frequency runoff hydrographs. This information is used to obtain an approximate probability distribution for the total sediment transport capacity, and the mean and standard deviation of this distribution are computed. Comparing the results for the catchment in its present state with a future developed state, using a selection of new channel parameters, indicates how to improve the channel to control changes in sedimentation due to development. The analysis procedure provides a basis for estimating a new channel configuration such that the new flow conditions retain, as best as possible, the existing condition sedimentation effects, and hence retain the natural sediment supply and transport trends even though runoff flow rates have changed due to land development within the catchment. The results of Wilson Creek are typical of the several sites examined, see Table 3 below. The T=2, T=5, T=25, and T=100 year values for total sediment transport capacity, in kilotons, are 6.9, 39.4, 61.3, and 96.7 with a mean of 17.1 and standard deviation of 19.3. After development with no change in the channel the respective values increase to: 17.9, 84.6, 128.1, and 258.0 with a mean of 39.1 and standard deviation of 44.3. A new channel can be constructed which will reduce these sediment transport capacity values, after development, to 5.2, 41.0, 62.0, and 124.8 with a mean of 17.4 and standard deviation of 22.0.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...