ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-28
    Description: A facility that allows interrogation of combusting flows by advanced diagnostic methods and instrumentation has been developed at the NASA Lewis Research Center. An optically accessible flame tube combustor is described which has high temperature, pressure, and air flow capabilities. The windows in the combustor measure 3.8 cm axially by 5.1 cm radially, providing 67% optical access to the 7.6 cm x 7.6 cm cross section flow chamber. Advanced gas analysis instrumentation is available through a gas chromatography/mass spectrometer system (GC/MS), which has on-line capability for heavy hydrocarbon measurement with resolution to the parts per billion level. The instrumentation allows one to study combusting flows and combustor subcomponents, such as fuel injectors and air swirlers. Planar Laser Induced Fluorescence (PLIF) can measure unstable combustion species, which cannot be obtained with traditional gas sampling. This type of data is especially useful to combustion modellers. The optical access allows measurements to have high spatial and temporal resolution. GC/MS data and PLIF images of OH- are presented from experiments using a lean direct injection (LDI) combustor burning Jet-A fuel at inlet temperatures ranging from 810 K to 866 K, combustor pressures up to 1380 kPa, and equivalence ratios from 0.41 to 0.59.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: NASA-TM-107073 , NAS 1.15:107073 , E-9937 , AIAA PAPER 95-2685 , NIPS-95-06835
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-02
    Description: Recent advances in atmospheric sciences have shown that the chemical composition of the entire atmosphere of the planet (gases and airborne particles) has been changed due to human activity and that these changes have changed the heat balance of the planet. National Research Council findings indicate that anthropogenic aerosols1 reduce the amount of solar radiation reaching the Earth's surface. Atmospheric global models suggest that sulfate aerosols change the energy balance of the Northern Hemisphere as much as anthropogenic greenhouse gases have. In response to these findings, NASA initiated the Atmospheric Effects of Aviation Project (AEAP) to advance the research needed to define present and future aircraft emissions and their effects on the Earth's atmosphere. Although the importance of aerosols and their precursors is now well recognized, the characterization of current subsonic engines for these emissions is far from complete. Furthermore, since the relationship of engine operating parameters to aerosol emissions is not known, extrapolation to untested and unbuilt engines necessarily remains highly uncertain. Tests in 1997-an engine test at the NASA Lewis Research Center and the corresponding flight measurement test at the NASA Langley Research Center-attempted to address both issues by measuring emissions when fuels containing different levels of sulfur were burned. Measurement systems from four research groups were involved in the Lewis engine test: A Lewis gas analyzer suite to measure the concentration of gaseous species 1. including NO, NOx, CO, CO2, O2, THC, and SO2 as well as the smoke number; 2. A University of Missouri-Rolla Mobile Aerosol Sampling System to measure aerosol and particulate properties including the total concentration, size distribution, volatility, and hydration property; 3. An Air Force Research Laboratory Chemical Ionization Mass Spectrometer to measure the concentration of SO2 and SO3/H2SO4; and 4. An Aerodyne Research Inc. Tunable Diode Laser System to measure the concentrations of SO2, SO3, NO, NO2, CO2, and H2O. By September 1997, an F100 engine operating at several power levels at sea level and up to six simulated altitudes had been tested with commercial jet fuels with three levels of sulfur content and one military jet fuel. The data are being vigorously analyzed. A complete report is anticipated for the 1998 Atmospheric Effects of Aviation Project Annual Conference.
    Keywords: Aircraft Propulsion and Power
    Type: Research and Technology 1997; NASA/TM-1998-206312
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-10
    Description: This report describes the development of a three-dimensional database of aircraft fuel use and emissions (NO(x), CO, and hydrocarbons) for the commercial aircraft fleet projected to 2020. Global totals of emissions and fuel burn for 2020 are compared to global totals from previous aircraft emission scenario calculations.
    Keywords: Air Transportation and Safety
    Type: NASA/CR-2003-212331 , NAS 1.26:212331 , E-13926
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: The Aviation Particle Emissions Workshop was held on November 18 19, 2003, in Cleveland, Ohio. It was sponsored by the National Aeronautic and Space Administration (NASA) under the Vehicle Systems Program (VSP) and the Ultra- Efficient Engine Technology (UEET) Project. The objectives were to build a sound foundation for a comprehensive particulate research roadmap and to provide a forum for discussion among U.S. stakeholders and researchers. Presentations included perspectives from the Federal Aviation Administration, the U.S. Environmental Protection Agency, NASA, and United States airports. There were five interactive technical sessions: sampling methodology, measurement methodology, particle modeling, database, inventory and test venue, and air quality. Each group presented technical issues which generated excellent discussion. The five session leads collaborated with their members to present summaries and conclusions to each content area.
    Keywords: Environment Pollution
    Type: NASA/CP-2004-213398 , E?14901 , Aviation Particle Emissions Workshop; Nov 18, 2003 - Nov 19, 2003; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...