ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-31
    Description: The NASA LaRC is conducting and supporting research to develop cost-effective fabrication methods that are applicable to primary composite aircraft structures. One of the most promising fabrication methods that has evolved is resin transfer molding (RTM) of dry textile material forms. RTM has been used for many years for secondary structures, but has received increased emphasis because it is an excellent method for applying resin to damage-tolerant textile preforms at low cost. Textile preforms based on processes such as weaving, braiding, knitting, stitching, and combinations of these have been shown to offer significant improvements in damage tolerance compared to laminated tape composites. The use of low-cost resins combined with textile preforms could provide a major breakthrough in achieving cost-effective composite aircraft structures. RTM uses resin in its lowest cost form, and storage and spoilage costs are minimal. Near net shape textile preforms are expected to be cost-effective because automated machines can be used to produce the preforms, post-cure operations such as machining and fastening are minimized, and material scrap rate may be reduced in comparison with traditional prepreg molding. The purpose of this paper is to discuss experimental and analytical techniques that are under development at NASA Langley to aid the engineer in developing RTM processes for airframe structural elements. Included are experimental techniques to characterize preform and resin behavior and analytical methods that were developed to predict resin flow and cure kinetics.
    Keywords: COMPOSITE MATERIALS
    Type: FAA, Ninth DOD(NASA)FAA Conference on Fibrous Composites in Structural Design, Volume 3; p 1303-1315
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: RTMCL is a user friendly computer code which simulates the manufacture of fabric composites by the resin infusion process. The computer code is based on the process simulation model described in reference 1. Included in the user's guide is a detailed step by step description of how to run the program and enter and modify the input data set. Sample input and output files are included along with an explanation of the results. Finally, a complete listing of the program is provided.
    Keywords: COMPUTER PROGRAMMING AND SOFTWARE
    Type: NASA-CR-189928 , CCMS-92-03 , VPI-E-92-04 , NAS 1.26:189928
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: A model was developed which can be used to simulate infiltration and cure of textile composites by resin transfer molding. Fabric preforms were resin infiltrated and cured using model generated optimized one-step infiltration/cure protocols. Frequency dependent electromagnetic sensing (FDEMS) was used to monitor in situ resin infiltration and cure during processing. FDEMS measurements of infiltration time, resin viscosity, and resin degree of cure agreed well with values predicted by the simulation model. Textile composites fabricated using a one-step infiltration/cure procedure were uniformly resin impregnated and void free. Fiber volume fraction measurements by the resin digestion method compared well with values predicted using the model.
    Keywords: COMPOSITE MATERIALS
    Type: First NASA Advanced Composites Technology Conference, Part 2; p 425-441
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Process simulation models and cure monitoring sensors are discussed for use in optimal processing of fiber-reinforced composites. Analytical models relate the specified temperature and pressure cure cycle to the thermal, chemical, and physical processes occurring in the composite during consolidation and cure. Frequency-dependent electromagnetic sensing (FDEMS) is described as an in situ sensor for monitoring the composite curing process and for verification of process simulation models. A model for resin transfer molding of textile composites is used to illustrate the predictive capabilities of a process simulation model. The model is used to calculate the resin infiltration time, fiber volume fraction, resin viscosity, and resin degree of cure. Results of the model are compared with in situ FDEMS measurements.
    Keywords: COMPOSITE MATERIALS
    Type: International Conference on Composite Materials (ICCM/8); Jul 15, 1991 - Jul 19, 1991; Honolulu, HI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: A 1-D infiltration/cure model was developed to simulate fabrication of advanced textile composites by the resin film infusion process. The simulation model relates the applied temperature and pressure processing cycles, along with the experimentally measured compaction and permeability characteristics of the fabric preforms, to the temperature distribution, the resin degree of cure and viscosity, and the infiltration flow front position as a function of time. The model also predicts the final panel thickness, fiber volume fraction, and resin mass for full saturation as a function of compaction pressure. Composite panels were fabricated using the RTM (Resin Transfer Molding) film infusion technique from knitted, knitted/stitched, and 2-D woven carbon preforms and Hercules 3501-6 resin. Fabric composites were fabricated at different compaction pressures and temperature cycles to determine the effects of the processing on the properties. The composites were C-scanned and micrographed to determine the quality of each panel. Advanced cure cycles, developed from the RTM simulation model, were used to reduce the total cure cycle times by a factor of 3 and the total infiltration times by a factor of 2.
    Keywords: COMPOSITE MATERIALS
    Type: NASA-CR-190154 , NAS 1.26:190154 , CCMS-92-05 , VPI-E-92-05 , PB92-177328
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...