ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Engineering with computers 3 (1987), S. 13-20 
    ISSN: 1435-5663
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Technology
    Notes: Abstract The introduction of engineering work stations has made it possible for an analyst to describe a two-dimensional finite element model and view its response in a real-time, interactive graphical environment. This interactive environment puts severe performance restrictions on finite element programs. The programs must be able to respond to an analyst's request in a reasonable amount of time. The traditional finite element data structures cannot provide the required performance. This paper introduces a new application of an existing data structure, the winged-edge, which can provide the required performance. The winged-edge data structure is described, with particular emphasis given to its use for finite element analysis. The implementation of the data structure in a fracture analysis program is discussed and a number of examples of its use are presented.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Engineering with computers 9 (1993), S. 63-82 
    ISSN: 1435-5663
    Keywords: Computational fracture mechanics ; Crack propagation ; Three-dimensional fracture mechanics ; Topological data structure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Technology
    Notes: Abstract This paper describes the fundamental modeling approaches adopted for crack nucleation and propagation in a software system that is specifically designed to simulate problems with evolutionary geometry. Only the topological and geometrical aspects of crack modeling, and how these aspects affect the database representation in the system, are addressed in the present discussion. The following are the innovative features of the present crack modeling approach: (a) crack simulation is done with a true geometric representation of the structure, via solid modeling; (b) crack modeling relies on the sophisticated, topology-based data structure of this system to support linkage to the solid model, fast interaction and accurate representation of evolving flaw shapes; (c) the system provides the ability to specify flaws of arbitrary shape (including non-planar flaws), size and orientation at arbitrary locations in the geometric model; (d) the flaw is specified at the desired location in the actual structure geometry, rather than at a location in the mesh; (e) the system uses all its automatic and local remeshing capabilities for the simulation of flaw initiation and growth.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 38 (1995), S. 2677-2701 
    ISSN: 0029-5981
    Keywords: automatic mesh generation ; quadtree ; quadrilateral elements ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: A new hybrid algorithm for automatically generating either an all-quadrilateral or an all-triangular element mesh within an arbitrarily shaped domain is described. The input consists of one or more closed loops of straight-line segments that bound the domain. Internal mesh density is inferred from the boundary density using a recursive spatial decomposition (quadtree) procedure. All-triangular element meshes are generated using a boundary contraction procedure. All-quadrilateral element meshes are generated by modifying the boundary contraction procedure to produce a mixed element mesh at half the density of the final mesh and then applying a polygon-splitting procedure. The final meshes exhibit good transitioning properties and are compatible with the given boundary segments which are not altered. The algorithm can support discrete crack growth simulation wherein each step of crack growth results in an arbitrarily shaped region of elements deleted about each crack tip. The algorithm is described and examples of the generated meshes are provided for a representative selection of cracked and uncracked structures.
    Additional Material: 32 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 38 (1995), S. 1611-1633 
    ISSN: 0029-5981
    Keywords: fracture ; fatigue ; shell cracks ; curvilinear growth ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: A methodology for simulating the growth of long through cracks in the skin of pressurized aircraft fuselage structures is described. Crack trajectories are allowed to be arbitrary and are computed as part of the simulation. The interaction between the mechanical loads acting on the superstructure and the local structural response near the crack tips is accounted for by employing a hierarchical modelling strategy. The structural response for each cracked configuration is obtained using a geometrically non-linear shell finite element analysis procedure. Four stress intensity factors, two for membrane behaviour and two for bending using Kirchhoff plate theory, are computed using an extension of the modified crack closure integral method. Crack trajectories are determined by applying the maximum tangential stress criterion. Crack growth results in localized mesh deletion, and the deletion regions are remeshed automatically using a newly developed all-quadrilateral meshing algorithm. The effectiveness of the methodology, and its applicability to performing practical analyses of realistic structures, is demonstrated by simulating curvilinear crack growth in a fuselage panel that is representative of a typical narrow-body aircraft. The predicted crack trajectory and fatigue life compare well with measurements of these same quantities from a full-scale pressurized panel test.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1993-06-01
    Print ISSN: 0177-0667
    Electronic ISSN: 1435-5663
    Topics: Computer Science , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-03-16
    Print ISSN: 0177-0667
    Electronic ISSN: 1435-5663
    Topics: Computer Science , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1987-03-01
    Print ISSN: 0177-0667
    Electronic ISSN: 1435-5663
    Topics: Computer Science , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: A methodology for simulating the growth of long through cracks in the skin of pressurized aircraft fuselage structures is described. Crack trajectories are allowed to be arbitrary and are computed as part of the simulation. The interaction between the mechanical loads acting on the superstructure and the local structural response near the crack tips is accounted for by employing a hierarchical modeling strategy. The structural response for each cracked configuration is obtained using a geometrically nonlinear shell finite element analysis procedure. Four stress intensity factors, two for membrane behavior and two for bending using Kirchhoff plate theory, are computed using an extension of the modified crack closure integral method. Crack trajectories are determined by applying the maximum tangential stress criterion. Crack growth results in localized mesh deletion, and the deletion regions are remeshed automatically using a newly developed all-quadrilateral meshing algorithm. The effectiveness of the methodology and its applicability to performing practical analyses of realistic structures is demonstrated by simulating curvilinear crack growth in a fuselage panel that is representative of a typical narrow-body aircraft. The predicted crack trajectory and fatigue life compare well with measurements of these same quantities from a full-scale pressurized panel test.
    Keywords: STRUCTURAL MECHANICS
    Type: NASA. Langley Research Center, FAA(NASA International Symposium on Advanced Structural Integrity Methods for Airframe Durability and Damage Tolerance, Part 2; p 581-601
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Three-dimensional crack growth simulation was performed on a split-tooth gear design using boundary element modeling and linear elastic fracture mechanics. Initial cracks in the fillet of the teeth produced stress intensity factors of greater magnitude (and thus, greater crack growth rates) than those in the root or groove areas of the teeth. Crack growth simulation was performed on a case study to evaluate crack propagation paths. Tooth fracture was predicted from the crack growth simulation for an initial crack in the tooth fillet region. Tooth loads on the uncracked mesh of the split-tooth design were up to five times greater than those on the cracked mesh if equal deflections of the cracked and uncracked teeth were considered. Predicted crack shapes as well as crack propagation life are presented based on calculated stress intensity factors, mixed-mode crack propagation trajectory theories, and fatigue crack growth theories.
    Keywords: Mechanical Engineering
    Type: NASA/TM-1998-208827 , E-11436 , NAS 1.15:208827 , ARL-TR-1833 , Gearing and Power Transmission; Mar 16, 1999 - Mar 18, 1999; Paris; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Robust gear designs consider not only crack initiation, but crack propagation trajectories for a fail-safe design. In actual gear operation, the magnitude as well as the position of the force changes as the gear rotates through the mesh. A study to determine the effect of moving gear tooth load on crack propagation predictions was performed. Two-dimensional analysis of an involute spur gear and three-dimensional analysis of a spiral-bevel pinion gear using the finite element method and boundary element method were studied and compared to experiments. A modified theory for predicting gear crack propagation paths based on the criteria of Erdogan and Sih was investigated. Crack simulation based on calculated stress intensity factors and mixed mode crack angle prediction techniques using a simple static analysis in which the tooth load was located at the highest point of single tooth contact was validated. For three-dimensional analysis, however, the analysis was valid only as long as the crack did not approach the contact region on the tooth.
    Keywords: Mechanical Engineering
    Type: Journal of Mechanical Design; 123; 118-124
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...