ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © Marine Biological Laboratory, 2010. This article is posted here by permission of Marine Biological Laboratory for personal use, not for redistribution. The definitive version was published in Biological Bulletin 218 (2010): 15-24.
    Description: The sand-dwelling octopus Macrotritopus defilippi was filmed or photographed in five Caribbean locations mimicking the swimming behavior (posture, style, speed, duration) and coloration of the common, sand-dwelling flounder Bothus lunatus. Each species was exceptionally well camouflaged when stationary, and details of camouflaging techniques are described for M. defilippi. Octopuses implemented flounder mimicry only during swimming, when their movement would give away camouflage in this open sandy habitat. Thus, both camouflage and fish mimicry were used by the octopuses as a primary defense against visual predators. This is the first documentation of flounder mimicry by an Atlantic octopus, and only the fourth convincing case of mimicry for cephalopods, a taxon renowned for its polyphenism that is implemented mainly by neurally controlled skin patterning, but also—as shown here—by their soft flexible bodies.
    Description: RTH thanks the Sholley Foundation and ONR grant N000140610202 for partial support. ACW thanks the Our World-Underwater Scholarship Society, and AB is grateful for funding from POCI 2010 and Fundo Social Europeu through the Fundac ¸a˜o para a Cieˆncia e a Tecnologia, Portugal.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: video/quicktime
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © University of Chicago Press, 2007. This article is posted here by permission of University of Chicago Press for personal use, not for redistribution. The definitive version was published in American Naturalist 169 (2007): 543–551, doi:10.1086/512106.
    Description: Cephalopods are well known for their diverse, quick‐changing camouflage in a wide range of shallow habitats worldwide. However, there is no documentation that cephalopods use their diverse camouflage repertoire at night. We used a remotely operated vehicle equipped with a video camera and a red light to conduct 16 transects on the communal spawning grounds of the giant Australian cuttlefish Sepia apama situated on a temperate rock reef in southern Australia. Cuttlefish ceased sexual signaling and reproductive behavior at dusk and then settled to the bottom and quickly adapted their body patterns to produce camouflage that was tailored to different backgrounds. During the day, only 3% of cuttlefish were camouflaged on the spawning ground, but at night 86% (71 of 83 cuttlefish) were camouflaged in variations of three body pattern types: uniform (n=5), mottled (n=33), or disruptive (n=34) coloration. The implication is that nocturnal visual predators provide the selective pressure for rapid, changeable camouflage patterning tuned to different visual backgrounds at night.
    Description: This work was made possible by grant 7456-03 from the National Geographic Society Committee on Research and Exploration and support from the Sholley Foundation.
    Keywords: Crypsis ; Concealment ; Disruptive coloration ; Coincident disruptive coloration ; Cephalopod ; Sepia apama
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...