ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2019
    Description: Results show the QTP mega‐blowouts are some of the largest in the world. Regional patterns of blowout shape and size were observed reflecting extent of aeolian sediments and wind regimes, the relationship between the different morphological parameters showed consistency. Blowouts appear to have been initiated 100 to 500 years ago, coinciding with the Little Ice Age (LIA) climate event. Abstract Blowouts are wind‐eroded landforms that are widely distributed in the north‐eastern part in Qinghai–Tibet Plateau (QTP), China. These blowouts are thought to form in response to climate change and/or human activity but little is known about their morphodynamics. Using field surveys, remote sensing and geographic information system (GIS) spatial analysis, the distribution and morphology of blowouts are analysed and their initiation considered. Results show the QTP mega‐blowouts are some of the largest in the world. The orientations of the trough shaped blowouts are parallel with the prevailing wind, but the saucer and bowl‐shaped blowouts are influenced by bi‐directional transport. Whilst regional patterns of blowout shape and size were observed to reflect the extent of aeolian sediments and wind regimes, the relationship between the different morphological parameters showed consistency. During initial stages of development, the length to width ratios of blowouts increase rapidly with area but after they reach a mega size this relationship stabilizes as blowouts widen. Initial luminescence dating shows that blowouts appear to have initiated ~100 to 500 years ago, coinciding with the Little Ice Age (LIA) climate event when northwest winds are known to have intensified. Further work is required to confirm this initiation period and establish the significance of mega blowouts for landscape degradation and human activities. © 2018 John Wiley & Sons, Ltd.
    Print ISSN: 0360-1269
    Electronic ISSN: 1096-9837
    Topics: Geography , Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...