ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 33 (1989), S. 915-917 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 36 (1990), S. 402-410 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The gram-positive bacteria, Acinetobacter calcoaceticus, is capable of accumulating biopolymer in the carrier matrix of an immobilized cell system. Several possible mechanisms for the biopolymer accumulation are evaluated. It appears that direct solid surface polymer adsorption and polymer diffusion limitation within the pore space are minor factors in biopolymer accumulation. Calculations demonstrate that the cell bound polymer to dry cell weight ratio is much higher for immobilized cells than for free cells. The higher cell-bound polymer to dry-cell-weight ratio for immobilized cells as well as the accumulation of the immobilized cells in the Celite matrix are believed to be the main factors for biopolymer accumulation in the Carrier matrix. Further studies reveal that the cell-bound polymer to dry-cell-weight ratio is strongly affected by shear forces. At zero shear stress, such as would be present in the carrier matrix, cell bound polymer to dry cell weight ratio can be as high as 1.6. As the shear stress increases, this ratio decreases. When shear stress increases above 5 dyn/cm2, a level equivalent to the shear experienced by free cells in a stirred tank fermentation, cell-bound polymer decreases to less than 20% of dry cell weight. A macroscopic model is developed to describe the effect of shear stress on the cell-bound polymer to dry-cell-weight ratio.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 34 (1989), S. 1261-1267 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Acinetobacter calcoaceticus can be immobilized on Celite by adsorption. The salt concentrations suitable for immobilized cell fermentation are between 10 and 50 mM phosphate concentration. Low salt concentrations cause desorption of immobilized cells while high salt concentrations inhibit the adsorption of cells on Celite. It is also found that cell adsorption is better at lower pH than at higher pH. An airlift fermentation using immobilized cells at 300 g/L Celite loading shows that about 70% of the total polymer produced is accumulated in Celite pores at a concentration (15.4 g/L) almost threefold higher than that in the bulk liquid (5.7 g/L).
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...