ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
  • 1
    Publication Date: 2023-12-16
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Three volcanic arcs have been the source of New Zealand's volcanic activity since the Neogene: Northland arc, Coromandel Volcanic Zone (CVZ) and Taupō Volcanic Zone (TVZ). The eruption chronology for the Quaternary, sourced by the TVZ, is well studied and established, whereas the volcanic evolution of the precursor arc systems, like the CVZ (central activity c. 18 to 2 Ma), is poorly known due to limited accessibility to, or identification of, onshore volcanic deposits and their sources. Here, we investigate the marine tephra record of the Neogene, mostly sourced by the CVZ, of cores from IODP Exp. 375 (Sites U1520 and U1526), ODP Leg 181 (Sites 1123, 1124 and 1125), IODP Leg 329 (Site U1371) and DSDP Leg 90 (Site 594) offshore of New Zealand. In total, we identify 306 primary tephra layers in the marine sediments. Multi‐approach age models (e.g. biostratigraphy, zircon ages) are used in combination with geochemical fingerprinting (major and trace element compositions) and the stratigraphic context of each marine tephra layer to establish 168 tie‐lines between marine tephra layers from different holes and sites. Following this approach, we identify 208 explosive volcanic events in the Neogene between c. 17.5 and 2.6 Ma. This is the first comprehensive study of New Zealand's Neogene explosive volcanism established from tephrochronostratigraphic studies, which reveals continuous volcanic activity between c. 12 and 2.6 Ma with an abrupt compositional change at c. 4.5 Ma, potentially associated with the transition from CVZ to TVZ.〈/p〉
    Description: Plain Language Summary: Since 18 Ma, volcanic activity in New Zealand is dominantly sourced by the Coromandel Volcanic Zone (CVZ). Most caldera systems of the CVZ identified so far are located on Coromandel Peninsula in the NW of North Island, New Zealand, but studies of the CVZ are rare mainly due to the limited accessibility of its volcanic deposits, as well as missing stratigraphic continuity between different outcrops and the volcanic source. Here, our ocean drilling tephra record—mainly volcanic ash from explosive eruptions, distributed and falling out over the ocean—has a great potential to reveal the eruption history of the CVZ because it is preserved in marine sediments in a nearly undisturbed stratigraphic context. We analyzed ∼400 marine tephra layers from multiple ocean sediment cores off the coast of New Zealand for their geochemical glass compositions and identified 306 as largely undisturbed ash deposits. These primary ash deposits correspond to a total number of 208 Neogene volcanic events. Different dating methods result in a continuous marine tephra record for the last 12 Ma, equivalent to a unique and most complete eruptive history for the CVZ. This enables us to further unravel changes in the composition of the associated magmas with time.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉New Zealand's Neogene explosive volcanism based on the marine tephra record〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Geochemical fingerprinting of marine tephra layers across the study area to establish volcanic events〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Insights into geochemical variations with time, repose times and spatiotemporal distribution〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: DFG
    Description: Marsden project
    Description: https://doi.org/10.14379/iodp.proc.372B375.210.2023
    Keywords: ddc:551 ; marine tephrochronostratigraphy ; geochemical fingerprinting ; correlations of marine tephras between individual drill sites ; IODP ; ODP and DSDP drill sites ; neogene eruption record of New Zealand
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-03
    Description: In this paper, we analyse the distributions of number of events (N) and seismic energy (E) on the Earth's surface and along its radius as obtained from the global declustered catalogue of large independent events (M≥7.0), dissipating about 95% of the Earth's elastic budget. The latitude distribution of the seismic event density is almost symmetric with respect to the equator and the seismic energy flux distribution is bimodal; both have their medians near the equator so that they are equally distributed in the two hemispheres. This symmetry with respect to the equator suggests that the Earth's rotational dynamics contributes to modulate the long-term tectonic processes. The distributions of number and energy of earthquakes versus depth are not uniform aswell: 76% of the total earthquakes dissipates about 60% of the total energy in the first ~50 km; only 6% of events dissipates about 20% of the total amount of energy in a narrow depth interval, at the lower boundary of the upper mantle (550–680 km). Therefore, only the remaining 20% of energy is released along most of the depth extent of subduction zones (50–550 km). Since the energetic release along slabs is a minor fraction of the total seismic budget, the role of the slab pull appears as ancillary, if any, in driving plate tectonics. Moreover the concentration of seismic release in the not yet subducted lithosphere suggests that the force moving the plates acts on the uppermost lithosphere and contemporaneously all over the Earth's outer shell, again supporting a rotational/tidal modulation.
    Description: Published
    Description: 80-86
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Global seismicity ; Declustered catalogue ; Earthquake energy distribution ; Plate tectonics ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-07-21
    Description: The Tierra Blanca (TB) eruptive suite comprises the last four major eruptions of Ilopango caldera in El Salvador (≤45 ka), including the youngest Tierra Blanca Joven eruption (TBJ; ∼106 km3): the most voluminous event during the Holocene in Central America. Despite the protracted and productive history of explosive silicic eruptions at Ilopango caldera, many aspects regarding the longevity and the prevailing physicochemical conditions of the underlying magmatic system remain unknown. Zircon 238U‐230Th geochronology of the TB suite (TBJ, TB2, TB3, and TB4) reveals a continuous and overlapping crystallization history among individual eruptions, suggesting persistent melt presence in thermally and compositionally distinct magma reservoirs over the last ca. 80 kyr. The longevity of zircon is in contrast to previously determined crystallization timescales of 〈10 kyr for major mineral phases in TBJ. This dichotomy is explained by a process of rhyolitic melt segregation from a crystal‐rich refractory residue that incorporates zircon, whereas a new generation of major mineral phases crystallized shortly before eruption. Ti‐in‐zircon temperatures and amphibole geothermobarometry suggest that rhyolitic melt was extracted from different storage zones of the magma reservoir as indicated by distinct but synchronous thermochemical zircon histories among the TB suite eruptions. Zircon from TBJ and TB2 suggests magma differentiation within deeper and hotter parts of the reservoir, whereas zircon from TB3 and TB4 instead hints at crystallization in comparatively shallower and cooler domains. The assembly of the voluminous TBJ magma reservoir was also likely enhanced by cannibalization of hydrothermally altered components as suggested by low‐δ18O values in zircon (+4.5 ± 0.3‰).
    Description: Plain Language Summary: The collapse of a volcano edifice into its shallow magma chamber can produce one of the most dangerous single events in nature, known as a caldera‐forming eruption. The TBJ eruption in El Salvador is of this kind and occurred around 1,500 years ago, having a profound impact on Maya societies. Because of this, it is crucial to understand the inner workings of caldera‐forming eruptions to assess volcanic risks and their mitigation. Beneath Ilopango caldera, the micrometer‐sized radioisotopically datable mineral zircon grew within different storage levels of a silica‐rich magma reservoir suggesting continuous melt presence for up to ca. 80,000 years prior to eruption. The time information given by zircon contrasts with that extracted from other, more abundant minerals from the same rocks (〈10,000 years). We explain this time difference between coexisting minerals by the ability of melt to carry along small zircon crystals, whereas coeval, larger, and more abundant minerals are left behind in the partially solidified portion of the magma reservoir. Once the segregated melt coalesced in a shallower and dominantly liquid magma chamber, major minerals resumed crystallization shortly before eruption. In addition, this new magma incorporated parts of older magmatic rocks from preceding volcanic cycles, thus generating even larger magma volumes.
    Description: Key Points: U‐Th zircon ages for the last four explosive eruptions of Ilopango caldera reveal a long‐lived magma reservoir (〉80 kyr). Contrasting residence times for major minerals and zircon suggest extraction of zircon along with evolved melt from crystal residue. Melt extraction from vertically extensive, thermally zoned magma reservoir.
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Keywords: 549 ; 551.701 ; Central America ; Geochemistry ; Oxygen isotopes ; SIMS ; U‐series ; Zircon
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-04-22
    Description: The Global Consortium for the Classification of Fungi and fungus-like taxa is an international initiative of more than 550 mycologists to develop an electronic structure for the classification of these organisms. The members of the Consortium originate from 55 countries/regions worldwide, from a wide range of disciplines, and include senior, mid-career and early-career mycologists and plant pathologists. The Consortium will publish a biannual update of the Outline of Fungi and funguslike taxa, to act as an international scheme for other scientists. Notes on all newly published taxa at or above the level of species will be prepared and published online on the Outline of Fungi website (https://www.outlineoffungi.org/), and these will be finally published in the biannual edition of the Outline of Fungi and fungus-like taxa. Comments on recent important taxonomic opinions on controversial topics will be included in the biannual outline. For example, ‘to promote a more stable taxonomy in Fusarium given the divergences over its generic delimitation’, or ‘are there too many genera in the Boletales?’ and even more importantly, ‘what should be done with the tremendously diverse ‘dark fungal taxa?’ There are undeniable differences in mycologists’ perceptions and opinions regarding species classification as well as the establishment of new species. Given the pluralistic nature of fungal taxonomy and its implications for species concepts and the nature of species, this consortium aims to provide a platform to better refine and stabilise fungal classification, taking into consideration views from different parties. In the future, a confidential voting system will be set up to gauge the opinions of all mycologists in the Consortium on important topics. The results of such surveys will be presented to the International Commission on the Taxonomy of Fungi (ICTF) and the Nomenclature Committee for Fungi (NCF) with opinions and percentages of votes for and against. Criticisms based on scientific evidence with regards to nomenclature, classifications, and taxonomic concepts will be welcomed, and any recommendations on specific taxonomic issues will also be encouraged; however, we will encourage professionally and ethically responsible criticisms of others’ work. This biannual ongoing project will provide an outlet for advances in various topics of fungal classification, nomenclature, and taxonomic concepts and lead to a community-agreed classification scheme for the fungi and fungus-like taxa. Interested parties should contact the lead author if they would like to be involved in future outlines.
    Keywords: Plant Science ; Ecology ; Evolution ; Behavior and Systematics
    Repository Name: National Museum of Natural History, Netherlands
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Inorganic chemistry 34 (1995), S. 3241-3244 
    ISSN: 1520-510X
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1520-5002
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1520-5002
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Inorganic chemistry 34 (1995), S. 5672-5679 
    ISSN: 1520-510X
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of natural products 55 (1992), S. 644-648 
    ISSN: 1520-6025
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1520-5827
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...