ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2019-07-25
    Description: We report modeling, fabrication, cryogenic tensile testing, and magnetic field measurements of a shield around an adiabatic demagnetization stage (ADR) built for the XRISM/Resolve instrument. During testing of a near-identical stage built for Astro-H, a previous spaceflight mission, it was determined that the magnet at full current generated a field external to the shield that violated the maximum dipole-moment requirement of the spacecraft. In addition, there was an interference with the detector assembly nearby when the magnet was greater than 85% of it's typical maximum current. Starting with the Astro-H shield design, we performed a parametric study that increased the thickness of the shield in critical regions. This calculation proceeded until the magnetic field satisfied the estimated maximum field allowed at the detector array based upon the Astro-H measurements. We also performed a detailed measurement of the field generated by the ADR stage at full current as a function of relative angle between the magnet axis and a series of flux-gate magnetometers. Details and results from the calculation and subsequent measurement will be presented.
    Keywords: Engineering (General)
    Type: GSFC-E-DAA-TN70573 , Space Cryogenics Workshop 2019; Jul 17, 2019 - Jul 19, 2019; Southbury, CT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Here we report further progress in the development of the MARCO POLO-Mars Pathfinder Atmospheric Processing Module (APM). The APM is designed to demonstrate in situ resource utilization (ISRU) of the Martian atmosphere, which primarily consists of carbon dioxide (CO2). The APM is part of a larger project with the overall goal of collecting and utilizing CO2 found in the atmosphere and water in the regolith of Mars to produce methane and oxygen to be used as rocket propellant, eliminating the need to import those to Mars for human missions, thus significantly reducing costs. The initial focus of NASA's new ISRU Project is modeling of key ISRU components, such as the CO2 Freezers and the Sabatier reactor of the APM. We have designed models of those components and verified the models with the APM by gathering additional data for the Sabatier reactor. Future efforts will be focused on simultaneous operations of the APM and other MARCO POLO-Mars Pathfinder modules.
    Keywords: Propellants and Fuels
    Type: KSC-E-DAA-TN46026 , AIAA Space 2017; Sep 12, 2017 - Sep 14, 2017; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-01-22
    Description: The scientific balloon program at NASA offers an exciting and open area of opportunity for testing new technologies and for conducting meaningful experimentation at a fraction of the cost of a space mission. This paper outlines a simple thermal model developed and employed for the Primordial Inflation Polarization ExplorER (PIPER). The sub-orbital environment that PIPER operates in hosts an interesting mix of atmospheric and space thermal challenges. The work done was to mitigate thermal loads and passively cool the payload's exterior mounted electronics at an altitude of 36.6 km. This was done by characterizing the thermal environment and then designing solutions for the heat loads through a combined radiation and conduction passive cooling radiator system thermal model. Despite the simplicity and subsequent limitations of the model, as well as some unexpected payload operational events, the model produced results between 0.31% and 11.8% difference between the predicted values and measured average temperatures. From these results, the model was able to successfully provide estimates for the electronics temperatures. Additional flights will be needed to eliminate unknowns encountered in this flight in order to further refine the model for higher accuracy.
    Keywords: Engineering (General)
    Type: GSFC-E-DAA-TN76082 , AIAA SciTech Forum; Jan 06, 2020 - Jan 10, 2020; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...