ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2003-03-01
    Print ISSN: 0938-0108
    Electronic ISSN: 1875-0494
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Natural Sciences in General , Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-10
    Description: A research project is underway to study smolder and the transition to flaming in microgravity. The Microgravity Smoldering Combustion (MSC) flight project is an ongoing research project to provide a better understanding of the controlling mechanisms of smoldering combustion. The Smoldering Transition and Flaming (STAF) project is a recently established research program that will utilize the Fluids and Combustion Facility (FCF) of the ISS to examine the transition from smolder to flaming in microgravity. In forced flow smolder experiments ambient pressure in the MSC chamber rises, thus motivating the need to understand the effects of pressure on smoldering combustion. Further, the STAF experiment has constraints on experimental scale and testing at elevated pressure may be a mechanism to reduce the sample size by enhancing the smolder reaction. In the work we are reporting here, a series of ground-based tests determine the effects of pressure on smoldering combustion. These tests are compared with data obtained from experiments conducted aboard the Space Shuttle in flights STS-69 and STS-77. Measurements of one-dimensional smolder propagation velocity are made by thermocouple probing and a non-intrusive Ultrasound Imaging System (UIS)]. Thermocouples are also used to obtain reaction temperatures and the UIS is used to determine permeabilities of the fuel in real-time.
    Keywords: Inorganic, Organic and Physical Chemistry
    Type: Sixth International Microgravity Combustion Workshop; 21-24; NASA/CP-2001-210826
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-10
    Description: The possibility of an accidental fire in space-based facilities is a primary concern of space exploration programs. Spacecraft environments generally present low velocity air currents produced by ventilation and heating systems (of the order of 0.1 m/s), and fluctuating oxygen concentrations around that of air due to CO2 removal systems. Recent experiments of flame spread in microgravity show the spread rate to be faster and the limiting oxygen concentration lower than in normal-gravity. To date, there is not a material flammability-testing protocol that specifically addresses issues related to microgravity conditions. The present project (FIST) aims to establish a testing methodology that is suitable for the specific conditions of reduced gravity. The concepts underlying the operation of the LIFT apparatus, ASTM-E 1321-93, have been used to develop the Forced-flow Ignition and flame-Spread Test (FIST). As in the LIFT, the FIST is used to obtain the flammability diagrams of the material, i.e., graphs of ignition delay time and flame spread rate as a function of the externally applied radiant flux, but under forced flow rather than natural convection conditions, and for different oxygen concentrations. Although the flammability diagrams are similar, the flammability properties obtained with the FIST are found to depend on the flow characteristics. A research program is currently underway with the purpose of implementing the FIST as a protocol to characterize the flammability performance of solid materials to be used in microgravity facilities. To this point, tests have been performed with the FIST apparatus in both normal-gravity and microgravity conditions to determine the effects of oxidizer flow characteristics on the flammability diagrams of polymethylmethacrylate (PMMA) fuel samples. The experiments are conducted at reduced gravity in a KC- 135 aircraft following a parabolic flight trajectory that provides up to 25 seconds of low gravity. The objective of the experiments is to obtain data of ignition delay and flame spread rate at low flow velocities (0.1 to 0.2 m/s), which cannot be obtained under normal gravity because of the natural convection induced flows (approx. 0.5 m/s). Due to the limited reduced gravity time, the data can only be obtained for high radiant fluxes, and are consequently limited in scope. These tests do, however, provide insight into the flammability diagram characteristics at low velocity and reduced gravity, and also into the implications of the flow-dependence of the flammability properties under environments similar to those encountered in space facilities.
    Keywords: Materials Processing
    Type: Fifth International Microgravity Combustion Workshop; 35-38
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...