ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
  • 1
    facet.materialart.
    Unknown
    Springer Nature
    Publication Date: 2019
    Electronic ISSN: 2397-3366
    Topics: Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1991-12-01
    Print ISSN: 0003-021X
    Electronic ISSN: 1558-9331
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-02-17
    Description: There is an international commitment to develop a comprehensive, coordinated and sustained ocean observation system. However, a foundation for any observing, monitoring or research effort is effective and reliable in situ sensor technologies that accurately measure key environmental parameters. Ultimately, the data used for modelling efforts, management decisions and rapid responses to ocean hazards are only as good as the instruments that collect them. There is also a compelling need to develop and incorporate new or novel technologies to improve all aspects of existing observing systems and meet various emerging challenges. Assessment of Sensor Performance was a cross-cutting issues session at the international OceanSensors08 workshop in Warnemünde, Germany, which also has penetrated some of the papers published as a result of the workshop (Denuault, 2009; Kröger et al., 2009; Zielinski et al., 2009). The discussions were focused on how best to classify and validate the instruments required for effective and reliable ocean observations and research. The following is a summary of the discussions and conclusions drawn from this workshop, which specifically addresses the characterisation of sensor systems, technology readiness levels, verification of sensor performance and quality management of sensor systems.
    Print ISSN: 1812-0784
    Electronic ISSN: 1812-0792
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-07-31
    Description: There is an international commitment to develop a comprehensive, coordinated, and sustained ocean observation system. However, a foundation for any observing, monitoring, or research effort is effective and reliable in situ sensor technologies that accurately measure key environmental parameters. Ultimately, the data used for modeling efforts, management decisions, and rapid responses to ocean hazards are only as good as the instruments that collect them. There is also a compelling need to develop and incorporate new or novel technologies to improve all aspects of existing observing systems and meet various emerging challenges. Assessment of Sensor Performance was a cross-cutting issues session at the international OceanSensor08 workshop in Warnemünde, Germany. The discussions were focused on how best to classify and validate the instruments required for effective and reliable ocean observations and research. The following is a summary of the discussions and conclusions drawn from this workshop, which specifically addresses the characterization of sensor systems, technology readiness levels, verification of sensor performance, and quality management of sensor systems.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-06-18
    Description: Colaço, A., Blandin, J., Cannat, M., Carval, T., Chavagnac, V., Connelly, D., Fabian, M., Ghiron, S., Goslin, J., Miranda, J. M., Reverdin, G., Sarrazin, J., Waldmann, C., and Sarradin, M. 2011. MoMAR-D: a technological challenge to monitor the dynamics of the Lucky Strike vent ecosystem. – ICES Journal of Marine Science, 68: 416–424. The MoMAR (monitoring the Mid-Atlantic Ridge) project was initiated in 1998 by the InterRidge programme to promote and coordinate long-term multidisciplinary monitoring of hydrothermal vents at the Mid-Atlantic Ridge (MAR). The major objective of the project is to study vent ecosystem dynamics using a multidisciplinary approach from geophysics to microbiology over a period of a few decades. MoMAR-D is a demonstration project of MoMAR, partially funded by the European network of excellence ESONET (http://www.esonet-noe.org/). MoMAR-D aims to deploy and manage a multidisciplinary observing system at the Lucky Strike vent field for 1 year. This large hydrothermal field is located at the centre of one of the most volcanically active segments of the MAR. The project has been set up to monitor this region to capture evidence of volcanic events, observe interactions between faulting, magmatism, and hydrothermal circulations, and to evaluate the potential impacts of these environmental factors on the unusual communities colonizing hydrothermal vents. The MoMAR-D infrastructure consists of two sea monitoring nodes (SEAMON) acoustically linked to a surface buoy with satellite communication to a land-based station. The first node will be mainly dedicated to geophysical studies, whereas the second will focus on ecological studies and chemical fluxes. The infrastructure should have been deployed in September 2010 during the MoMARSAT cruise.
    Print ISSN: 1054-3139
    Electronic ISSN: 1095-9289
    Topics: Biology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-08-05
    Description: In this paper we synthesize the new knowledge on oxygen and oxygen-related phenomena in aquatic systems, resulting from the EU-FP7 project HYPOX ("In situ monitoring of oxygen depletion in hypoxic ecosystems of coastal and open seas, and land-locked water bodies", www.hypox.net). In view of the anticipated oxygen loss in aquatic systems due to eutrophication and climate change, HYPOX was set up to improve capacities to monitor hypoxia as well as to understand its causes and consequences. Temporal dynamics and spatial patterns of hypoxia were analysed in field studies in various aquatic environments, including the Baltic Sea, the Black Sea, Scottish and Scandinavian fjords, Ionian Sea lagoons and embayments, and in Swiss lakes. Examples of episodic and rapid (hours) occurrences of hypoxia as well as seasonal changes in bottom-water oxygenation in stratified systems are discussed. Geologically-driven hypoxia caused by gas seepage is demonstrated. Using novel technologies, temporal and spatial patterns of water-column oxygenation, from basin-scale seasonal patterns to meter-scale submicromolar oxygen distributions were resolved. Existing multi-decadal monitoring data were used to demonstrate the imprint of climate change and eutrophication on long-term oxygen distributions. Organic and inorganic proxies were used to extend investigations on past oxygen conditions to centennial and even longer timescales not resolved by monitoring. The effects of hypoxia on faunal communities and biogeochemical processes were also addressed in the project. An investigation of benthic fauna is presented as an example of hypoxia-devastated benthic communities that slowly recover upon a reduction in eutrophication in a system where natural and anthropogenic hypoxia overlap. Biogeochemical investigations reveal that oxygen intrusions have a strong effect on microbially-mediated redox cycling of elements. Observations and modeling studies of the sediments demonstrate the effect of seasonally changing oxygen conditions on benthic mineralization pathways and fluxes. Data quality and access are crucial in hypoxia research. Therefore, technical issues are addressed, including the availability of suitable sensor technology to resolve gradual changes in bottom-water oxygen that can be expected as a result of climate change in deep-sea waters. Using cabled observatories as examples, we show how the benefit of continuous oxygen monitoring can be maximized by adopting proper quality control. Finally, we discuss strategies for state-of-the-art data archiving and dissemination in compliance with global standards and how ocean observations may contribute to global earth observation attempts.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-04-30
    Description: The outer Western Crimean Shelf of the Black Sea is a natural laboratory to investigate effects of stable oxic vs. varying hypoxic conditions on seafloor biogeochemical processes and benthic community structure. Bottom water oxygen concentrations varied between normoxic (175 μmol O2 L−1) and hypoxic (〈 63 μmol O2 L−1) or even anoxic/sulfidic conditions within a few kilometres distance. Variations in oxygen concentrations between 160 and 10 μmol L−1 even occurred within hours close to the chemocline at 134 m water depth. Total oxygen uptake, including diffusive as well as fauna-mediated oxygen consumption, decreased from 〉 15 mmol m−2 d−1 in the oxic zone to 〈 9 mmol m−2 d−1 in the hypoxic zone, correlating with changes in macrobenthos composition. Benthic diffusive oxygen uptake rates, comprising microbial respiration plus reoxidation of inorganic products, were around 4.5 mmol m−2 d−1, but declined to 1.3 mmol m−2 d−1 at oxygen concentrations below 20 μmol L−1. Measurements and modelling of pore water profiles indicated that reoxidation of reduced compounds played only a minor role in the diffusive oxygen uptake, leaving the major fraction to aerobic degradation of organic carbon. Remineralization efficiency decreased from 100% in the oxic zone, to 50% in the oxic-hypoxic, to 10% in the hypoxic-anoxic zone. Overall the faunal remineralization rate was more important, but also more influenced by fluctuating oxygen concentrations than microbial and geochemical oxidation processes.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-08-27
    Description: The outer western Crimean shelf of the Black Sea is a natural laboratory to investigate effects of stable oxic versus varying hypoxic conditions on seafloor biogeochemical processes and benthic community structure. Bottom-water oxygen concentrations ranged from normoxic (175 μmol O2 L−1) and hypoxic (〈 63 μmol O2 L−1) or even anoxic/sulfidic conditions within a few kilometers' distance. Variations in oxygen concentrations between 160 and 10 μmol L−1 even occurred within hours close to the chemocline at 134 m water depth. Total oxygen uptake, including diffusive as well as fauna-mediated oxygen consumption, decreased from 15 mmol m−2 d−1 on average in the oxic zone, to 7 mmol m−2 d−1 on average in the hypoxic zone, correlating with changes in macrobenthos composition. Benthic diffusive oxygen uptake rates, comprising respiration of microorganisms and small meiofauna, were similar in oxic and hypoxic zones (on average 4.5 mmol m−2 d−1), but declined to 1.3 mmol m−2 d−1 in bottom waters with oxygen concentrations below 20 μmol L−1. Measurements and modeling of porewater profiles indicated that reoxidation of reduced compounds played only a minor role in diffusive oxygen uptake under the different oxygen conditions, leaving the major fraction to aerobic degradation of organic carbon. Remineralization efficiency decreased from nearly 100 % in the oxic zone, to 50 % in the oxic–hypoxic zone, to 10 % in the hypoxic–anoxic zone. Overall, the faunal remineralization rate was more important, but also more influenced by fluctuating oxygen concentrations, than microbial and geochemical oxidation processes.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-02-27
    Description: In this paper we provide an overview of new knowledge on oxygen depletion (hypoxia) and related phenomena in aquatic systems resulting from the EU-FP7 project HYPOX ("In situ monitoring of oxygen depletion in hypoxic ecosystems of coastal and open seas, and landlocked water bodies", http://www.hypox.net). In view of the anticipated oxygen loss in aquatic systems due to eutrophication and climate change, HYPOX was set up to improve capacities to monitor hypoxia as well as to understand its causes and consequences. Temporal dynamics and spatial patterns of hypoxia were analyzed in field studies in various aquatic environments, including the Baltic Sea, the Black Sea, Scottish and Scandinavian fjords, Ionian Sea lagoons and embayments, and Swiss lakes. Examples of episodic and rapid (hours) occurrences of hypoxia, as well as seasonal changes in bottom-water oxygenation in stratified systems, are discussed. Geologically driven hypoxia caused by gas seepage is demonstrated. Using novel technologies, temporal and spatial patterns of water-column oxygenation, from basin-scale seasonal patterns to meter-scale sub-micromolar oxygen distributions, were resolved. Existing multidecadal monitoring data were used to demonstrate the imprint of climate change and eutrophication on long-term oxygen distributions. Organic and inorganic proxies were used to extend investigations on past oxygen conditions to centennial and even longer timescales that cannot be resolved by monitoring. The effects of hypoxia on faunal communities and biogeochemical processes were also addressed in the project. An investigation of benthic fauna is presented as an example of hypoxia-devastated benthic communities that slowly recover upon a reduction in eutrophication in a system where naturally occurring hypoxia overlaps with anthropogenic hypoxia. Biogeochemical investigations reveal that oxygen intrusions have a strong effect on the microbially mediated redox cycling of elements. Observations and modeling studies of the sediments demonstrate the effect of seasonally changing oxygen conditions on benthic mineralization pathways and fluxes. Data quality and access are crucial in hypoxia research. Technical issues are therefore also addressed, including the availability of suitable sensor technology to resolve the gradual changes in bottom-water oxygen in marine systems that can be expected as a result of climate change. Using cabled observatories as examples, we show how the benefit of continuous oxygen monitoring can be maximized by adopting proper quality control. Finally, we discuss strategies for state-of-the-art data archiving and dissemination in compliance with global standards, and how ocean observations can contribute to global earth observation attempts.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-09-23
    Description: Innovative robotic technologies are a key to study ocean processes in space and time. The work carried out during the ROBEX-Demonstration Mission on RV Polarstern will test the capability of new and innovative technologies, developed during the HGF Alliance ROBEX, in deep-sea environments. Investigations will include Arctic benthic and pelagic ecosystems strongly influenced by climate change, such as marine arctic sediments hosting gas hydrates and arctic deep-sea benthic communities. Different robotic platforms, including 3 types of crawler, glider, AUV, UAVs and senor systems (like Lab-on-a-Chip and multi-O2-profiler) are described and mission scenarios presented. The use of these new underwater technologies will improve our capabilities to improve our knowledge on the effects of climate change on the Arctic ecosystem and ocean observation.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...