ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1994-04-29
    Description: To facilitate molecular genetic analysis of vertebrate development, haploid genetics was used to construct a recombination map for the zebrafish Danio (Brachydanio) rerio. The map consists of 401 random amplified polymorphic DNAs (RAPDs) and 13 simple sequence repeats spaced at an average interval of 5.8 centimorgans. Strategies that exploit the advantages of haploid genetics and RAPD markers were developed that quickly mapped lethal and visible mutations and that placed cloned genes on the map. This map is useful for the position-based cloning of mutant genes, the characterization of chromosome rearrangements, and the investigation of evolution in vertebrate genomes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Postlethwait, J H -- Johnson, S L -- Midson, C N -- Talbot, W S -- Gates, M -- Ballinger, E W -- Africa, D -- Andrews, R -- Carl, T -- Eisen, J S -- 1RO1AI26734/AI/NIAID NIH HHS/ -- HD07470/HD/NICHD NIH HHS/ -- NS23915/NS/NINDS NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1994 Apr 29;264(5159):699-703.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Neurosciences, University of Oregon, Eugene 97403.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8171321" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Chromosome Mapping ; Cloning, Molecular ; Female ; Genetic Markers ; Genotype ; Male ; Mutation ; Phenotype ; Polymerase Chain Reaction ; Repetitive Sequences, Nucleic Acid ; Software ; Zebrafish/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-09-12
    Description: The myelin sheath allows axons to conduct action potentials rapidly in the vertebrate nervous system. Axonal signals activate expression of specific transcription factors, including Oct6 and Krox20, that initiate myelination in Schwann cells. Elevation of cyclic adenosine monophosphate (cAMP) can mimic axonal contact in vitro, but the mechanisms that regulate cAMP levels in vivo are unknown. Using mutational analysis in zebrafish, we found that the G protein-coupled receptor Gpr126 is required autonomously in Schwann cells for myelination. In gpr126 mutants, Schwann cells failed to express oct6 and krox20 and were arrested at the promyelinating stage. Elevation of cAMP in gpr126 mutants, but not krox20 mutants, could restore myelination. We propose that Gpr126 drives the differentiation of promyelinating Schwann cells by elevating cAMP levels, thereby triggering Oct6 expression and myelination.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2856697/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2856697/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Monk, Kelly R -- Naylor, Stephen G -- Glenn, Thomas D -- Mercurio, Sara -- Perlin, Julie R -- Dominguez, Claudia -- Moens, Cecilia B -- Talbot, William S -- GFP03011/Telethon/Italy -- HG002995/HG/NHGRI NIH HHS/ -- R01 NS050223/NS/NINDS NIH HHS/ -- R01 NS050223-04/NS/NINDS NIH HHS/ -- R56 NS050223/NS/NINDS NIH HHS/ -- R56 NS050223-05/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 Sep 11;325(5946):1402-5. doi: 10.1126/science.1173474.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19745155" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/physiology/ultrastructure ; Cell Differentiation ; Cyclic AMP/metabolism ; Cyclic AMP-Dependent Protein Kinases/metabolism ; Early Growth Response Protein 2/genetics/metabolism ; Embryo, Nonmammalian/cytology/metabolism ; Lateral Line System/innervation ; Molecular Sequence Data ; Mutation ; Myelin Basic Protein/metabolism ; Myelin Sheath/*physiology ; Neuregulin-1/metabolism ; Octamer Transcription Factor-6/genetics/metabolism ; Receptor, ErbB-3/genetics/metabolism ; Receptors, G-Protein-Coupled/genetics/*metabolism ; Schwann Cells/cytology/*metabolism ; Signal Transduction ; Zebrafish/embryology/genetics/growth & development/*metabolism ; Zebrafish Proteins/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-04-25
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-05-11
    Description: During peripheral nerve development, Schwann cells ensheathe axons and form myelin to enable rapid and efficient action potential propagation. Although myelination requires profound changes in Schwann cell shape, how neuron–glia interactions converge on the Schwann cell cytoskeleton to induce these changes is unknown. Here, we demonstrate that the submembranous cytoskeletal proteins αII and βII spectrin are polarized in Schwann cells and colocalize with signaling molecules known to modulate myelination in vitro. Silencing expression of these spectrins inhibited myelination in vitro, and remyelination in vivo. Furthermore, myelination was disrupted in motor nerves of zebrafish lacking αII spectrin. Finally, we demonstrate that loss of spectrin significantly reduces both F-actin in the Schwann cell cytoskeleton and the Nectin-like protein, Necl4, at the contact site between Schwann cells and axons. Therefore, we propose αII and βII spectrin in Schwann cells integrate the neuron–glia interactions mediated by membrane proteins into the actin-dependent cytoskeletal rearrangements necessary for myelination.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...