ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
  • 3
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Organic Geochemistry 41 (2010): 812-821, doi:10.1016/j.orggeochem.2010.05.003.
    Description: Hydraulic connectivity of petroleum reservoirs represents one of the biggest uncertainties for both oil production and petroleum system studies. Here, a geochemical analysis involving bulk and detailed measures of crude oil composition is shown to constrain connectivity more tightly than is possible with conventional methods. Three crude oils collected from different depths in a single well exhibit large gradients in viscosity, density, and asphaltene content. Crude oil samples are collected with a wireline sampling tool providing samples from well‐defined locations and relatively free of contamination by drilling fluids; the known provenance of these samples minimizes uncertainties in the subsequent analysis. The detailed chemical composition of almost the entire crude oil is determined by use of comprehensive two‐dimensional gas chromatography (GC×GC) to interrogate the nonpolar fraction and negative ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT‐ICR MS) to interrogate the polar fraction. The simultaneous presence of 25‐ norhopanes and mildly altered normal and isoprenoid alkanes is detected, suggesting that the reservoir has experienced multiple charges and contains a mixture of oils biodegraded to different extents. The gradient in asphaltene concentration is explained by an equilibrium model considering only gravitational segregation of asphaltene nanoaggregates; this grading can be responsible for the observed variation in viscosity. Combining these analyses yields a consistent picture of a connected reservoir in which the observed viscosity variation originates from gravitational segregation of asphaltene nanoaggregates in a crude oil with high asphaltene concentration resulting from multiple charges, including one charge that suffered severe biodegradation. Observation of these gradients having appropriate magnitudes suggests good reservoir connectivity with greater confidence than is possible with traditional techniques alone.
    Description: The mass spectrometry work was supported by the NSF Division of Materials Research through DMR‐06‐54118, and the State of Florida.
    Keywords: Compositional grading ; Reservoir connectivity ; Comprehensive two‐dimensional gas chromatography ; GC×GC ; Fourier transform mass spectrometry ; Ion cyclotron resonance ; FTMS ; FT‐ICR ; Electrospray ionization
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © Elsevier B.V., 2008. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Organic Geochemistry 39 (2008): 846-867, doi:10.1016/j.orggeochem.2008.03.006.
    Description: Hydrocarbon mixtures too complex to resolve by traditional capillary gas chromatrography display gas chromatograms with dramatically rising baselines or “humps” of coeluting compounds that are termed unresolved complex mixtures (UCMs). Because the constituents of UCMs are not ordinarily identified, a large amount of geochemical information is never explored. Gas chromatograms of saturated/unsaturated hydrocarbons extracted from Late Archean argillites and greywackes of the southern Abitibi Province of Ontario, Canada contain UCMs with different appearances or “topologies” relating to the intensity and retention time of the compounds comprising the UCMs. These topologies appear to have some level of stratigraphic organization, such that samples collected at any stratigraphic formation collectively are dominated by UCMs that either elute early- (within a window of C15-C20 of n-alkanes), early- to mid- (C15-C30 of n-alkanes), or have a broad UCM that extends through the entire retention time of the sample (from C15-C42 of n-alkanes). Comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC-MS) was used to resolve the constituents forming these various UCMs. Early- to mid- eluting UCMs are dominated by configurational isomers of alkyl-substituted and non substituted polycyclic compounds that contain up to six rings. Late eluting UCMs are composed of C36-C40 mono-, bi-, and tricyclic archaeal isoprenoid diastereomers. Broad UCMs spanning the retention time of compound elution contain nearly the same compounds observed in the early-, mid-, and late retention time UCMs. Although the origin of the polycyclic compounds is unclear, the variations in the UCM topology appear to depend on the concentration of initial compound classes that have the potential to become isomerized. Isomerization of these constituents may have resulted from hydrothermal alteration of organic matter.
    Description: This project was supported by NASA Exobiology grant #NAG5-13446 to Fabien Kenig. GC×GC analysis was supported by NSF grant IIS-0430835 and the Seaver Foundation to Christopher M. Reddy. Preparation of the archaeal biphytane standard was supported by NSF grant ARC-0520226 to Benjamin Van Mooy.
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: Author Posting. © National Academy of Sciences of the USA, 2007. This is the author's version of the work. It is posted here by permission of National Academy of Sciences of the USA for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences 104 (2007): 14260-14265, doi:10.1073/pnas.0610903104.
    Description: Highly cracked and isomerized archaeal lipids and bacterial lipids, structurally changed by thermal stress, are present in solvent extracts of 2,707-2,685 million year old (Ma) metasedimentary rocks from Timmins, Ontario, Canada. These lipids appear in conventional gas chromatograms as unresolved complex mixtures (UCMs) and include cyclic and acyclic biphytanes, C36-C39 derivatives of the biphytanes, and C31-C35 extended hopanes. Biphytane and extended hopanes are also found in high pressure catalytic hydrogenation (HPCH) products released from solvent-extracted sediments,indicating that archaea and bacteria were present in Late Archean sedimentary environments. Post-depositional, hydrothermal gold mineralization and graphite precipitation occurred prior to metamorphism (~2,665 Ma). Late Archean metamorphism significantly reduced the kerogen’s adsorptive capacity and severely restricted sediment porosity, limiting the potential for post-Archean additions of organic matter to the samples. Argillites exposed to hydrothermal gold mineralization have disproportionately high concentrations of extractable archaeal and bacterial lipids relative to what is releasable from their respective HPCH product and what is observed for argillites deposited away from these hydrothermal settings. The addition of these lipids to the sediments likely results from a Late Archean subsurface hydrothermal biosphere of archaea and bacteria.
    Description: This project was supported by NASA Exobiology grant #NAG5-13446 to Fabien Kenig. SEM analysis was supported by NSF grant EAR 0318769 to Juergen Schieber. GC×GC analysis was supported by NSF grant IIS-0430835 and the Seaver Foundation to Christopher M. Reddy.
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-03-11
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Bentley, J. N., Ventura, G. T., Walters, C. C., Sievert, S. M., & Seewald, J. S. The influence of near-surface sediment hydrothermalism on the TEX86 tetraether-lipid-based proxy and a new correction for ocean bottom lipid overprinting. Biogeosciences, 19(18), (2022): 4459–4477, https://doi.org/10.5194/bg-19-4459-2022.
    Description: The diversity and relative abundances of tetraether lipids produced by archaea and bacteria in soils and sediments are increasingly used to assess environmental change. For instance, the TetraEther indeX of 86 carbon atoms (TEX86), based on archaeal isoprenoidal glycerol dialkyl glycerol tetraether (iGDGT) lipids, is frequently applied to reconstruct past sea-surface temperatures (SSTs). Yet, it is unknown how the ratio fully responds to environmental and/or geochemical variations and if the produced signals are largely the adaptive response by Thaumarchaeota to oceanographic effects associated with climate or seasonal temperature changes in the upper water column. We present the results of a four push-core transect study of surface sediments collected along an environmental gradient at the Cathedral Hill hydrothermal-vent system in Guaymas Basin, Gulf of California. The transect crosses a region where advecting hydrothermal fluids reach 155 ∘C within the upper 21 cm below the seafloor (cm b.s.f.) close to the vent center to near-ambient conditions at the vent periphery. The recovered iGDGTs closest to the vent center experienced high rates of turnover with up to 94 % of the lipid pool being lost within the upper 21 cm b.s.f. Here, we show that the turnover is non-selective across TEX86 GDGT lipids and does not affect the ratio independently. However, as evident by TEX86 ratios being highly correlated to the Cathedral Hill vent sediment porewater temperatures (R2=0.84), the ratio can be strongly impacted by the combination of severe lipid loss coupled with the addition of in situ iGDGT production from archaeal communities living in the vent sediments. The resulting overprint produces absolute temperature offsets of up to 4 ∘C based on the TEX calibration relative to modern climate records of the region. The overprint is also striking given the flux of iGDGTs from the upper water column is estimated to be ∼ 93 % of the combined intact polar lipid (IPL) and core GDGT lipid pool initially deposited on the seafloor. A model to correct the overprint signal using IPLs is therefore presented that can similarly be applied to all near-surface marine sediment systems where calibration models or climate reconstructions are made based on the TEX86 measure.
    Description: This research has been supported by the Natural Sciences and Engineering Research Council of Canada (grant no. RGPIN-2018-06147; NSERC), NSERC Canada Research Chairs (CRC) program, Canada Foundation for Innovation (CFI; JELF–CRC, John R. Evans Leaders Fund), NSERC Discovery Grants program (application no. RGPIN-2017-05822), Woods Hole Oceanographic Institution (WHOI) Deep Ocean Exploration Initiative 2008, and Natural Science Foundation (grant no. MCB-0702677 to Jeffrey S. Seewald and Stefan M. Sievert; NSF).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...