ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 49 (1996), S. 456-466 
    ISSN: 0006-3592
    Keywords: microcarrier culture ; turbulent mixing ; 3-D particle tracking ; energy dissipation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Three-dimensional particle tracking velocimetry (3-D PTV), a modern, quantitative, visualization tool, has been applied to the characterization of the flow field in the impeller region of cell culture reactor vessels. The experimental system used here is a 250-mL microcarrier spinner vessel. The studies were conducted at three different agitation rates, 90, 150, and 210 rpm, corresponding to healthy, mildly damaging, and severely damaging shear intensities, respectively. The flow can be classified into three regions: a predominantly tangential (azimuthal) flow generated by the impeller; a trailing vortex region coming off the impeller tip; and a converging flow region close to the center of the vessel. The latter two are the regions of highest velocity gradients. Energy dissipation rates due to mean velocity gradients were also calculated to characterize the impeller stream. Local specific energy dissipation rates 〉 10,000 erg/(cm3sec) · have been measured. It is proposed that the critical regions for microcarrier culture damage due to impeller hydrodynamics are the trailing vortex region and the high energy converging flow region. Graphical representation of the mean velocity flow fields and the distribution of energy dissipation rates in the impeller region are also presented here. The merits of using the dissipation function (measure of specific energy dissipation rate) as a possible scale-up parameter are also discussed. © 1996 John Wiley & Sons, Inc.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-0778
    Keywords: 3-D PTV ; bioreactor agitation ; flow structures ; scale-up
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Three dimensional particle tracking velocimetry (3-D PTV) was used to characterize the flow fields in the impeller region of three microcarrier reactor vessels. Three typical cell culture bioreactors were chosen: 250 ml small-scale spinner vessels, 3 L bench-scale reactor, and 20 L medium-scale reactor. Conditions studied correspond to the actual operating conditions in industrial setting and were determined based on the current scale-up paradigm: the Kolmogorov eddy length criterion. In this paper we present characterization of hydrodynamics on the basis of flow structures produced because of agitation. Flow structures were determined from 3-D mean velocity results obtained using 3-D PTV. Although the impellers used in 3 L and 20 L reactors were almost identical, the flow structures produced in the two reactors differed considerably. Results indicate that near geometric scale up does not necessarily amount to scale-up of flow patterns and indicates that intensity as well as distribution of energy may vary considerably during such a scale-up.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1996-01-01
    Print ISSN: 0920-9069
    Electronic ISSN: 1573-0778
    Topics: Biology , Medicine , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...