ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0040-6090
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Thin Solid Films 202 (1991), S. 359-372 
    ISSN: 0040-6090
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Plasma chemistry and plasma processing 11 (1991), S. 185-201 
    ISSN: 1572-8986
    Keywords: Thermal plasma jet ; metallic and ceramic particles ; evaporation ; experimental
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Technology
    Notes: Abstract An experimental study of the vaporization of metallic and ceramic particles in a thermal do plasma jet has been initiated and two series of experiments have been performed: (1) measurement of the vapor concentration within the plasma jet by absorption spectroscopy. (2) Investigation of the vapor cloud surrounding a single particle in flight by emission spectroscopy. The temperature within this cloud is determined by the intensity ratio of two lines which are simultaneously measured. The cloud radius is deduced /torn measurement of the particle velocity by laser doppler anemometry, and the vapor concentration is calculated from the line intensity profile, once the temperature is known. Results on iron and alumina particles injected in argon or argon-hydrogen plasma jets are given and discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Plasma chemistry and plasma processing 2 (1982), S. 255-291 
    ISSN: 1572-8986
    Keywords: Plasma spraying process ; particle temperature and velocities ; plasma diagnostics ; alumina coatings
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Technology
    Notes: Abstract In this paper are described the main characteristics of the plasma spraying process of alumina deposits, i.e., the temperature and flow field of the plasma jets obtained with the classical spraying torches, the injection of the particles into the plasma jet, the particle surface temperature and velocities in the plasma (measured for calibrated alumina particles), and the coating generation. The measurements on the alumina particles are compared with the predictions of a mathematical model. The experimental and computed particle velocities are in rather good agreement. However, this is not the case for the particle surface temperature. Possible reasons for the discrepancy are proposed (influence of the carrier gas, thermophoretic forces, and poor penetration of the particles into the plasma core even for an injection velocity twice that of the optimal calculated one, as shown by recent measurements). Finally the correlations between the particle velocities and surface temperature, and the properties of the alumina coating (porosity, crystal structure, mechanical properties) are studied.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Plasma chemistry and plasma processing 14 (1994), S. 407-423 
    ISSN: 1572-8986
    Keywords: Thermal plasma spraying ; Rayleigh scattering ; heat transfer coefficient ; experimental
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Technology
    Notes: Abstract Gas temperature profiles in the plume of an argon-hydrogen thermal plasma jet were determined /torn Rayleigh scattered laser light. Measured profiles were found to be well fitted by a Gaussian curve. Temperature data were compared with values obtained from thermocouples and showed an increasing discrepancy for temperatures higher than 800 K. The presence Q1 a cooled substrate in the flow was observed to increase the center-line temperature by about 22 at the substrate. By, combining the temperature results with calorimetric measurements of heal fox, a heat transfer coefficient to a copper substrate held at 300 K Iras determined to be in the range 400–1000 W/m2. K under typical plasma spraying conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Plasma chemistry and plasma processing 16 (1995), S. S99 
    ISSN: 1572-8986
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Technology
    Notes: Abstract D.C. plasma jets temperature and velocity distributions as well as the arc root fluctuations at the anode were studied for Ar-H2 (25 vol%) plasma forming gases. The parameters were the arc current up to 700 A, the total gas flow rate up to 100 slm, and the nozzle diameter which was varied from 6 to 10 mm. The trajectories of partially stabilized zirconia particles into the jet were studied by a 2D laser imaging technique and two fast (100 ns) two color pyrometers. The results have revealed the difficulty to inject small particles into the plasma flow since most were found to by-pass the jet rather than penetrate it. The results also show the broad trajectory distribution within the jet and the influence of the arc root fluctuations on the mean particle trajectory distribution within the jet. Beside the measurements of the particle surface temperature and velocity distributions in flight, the particle flattening and the cooling of the resulting splats were studied statistically for single particles all over the spray cone. Such studies have emphasized the drastic influence of the substrates or previously deposited layers temperature on the contact between them and the splats. At 200–300°C this contact is excellent (cooling rates of the order of 100 K/μs for 1 μm thick splats) and it results in a columnar growth within the splats and the layered splats of a bead (up to 500 layered splats). This growth can be observed through passes provided the bead surface temperature has not cooled too much (a few tens of K) before the next bead covers it. A/C values up to 60 MPa were achieved with PSZ coatings. The effect of impact velocity of the particles, of substrate preheating temperature, of relative movments torch to substrate, of substrate oxidation on A/C values and splat formation were also studied.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Plasma chemistry and plasma processing 18 (1998), S. 551-574 
    ISSN: 1572-8986
    Keywords: Plasma spraying ; plasma jet ; arc fluctuations ; particle injection
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Technology
    Notes: Abstract The operation of plasma guns used for plasma spraying involves a continuous movement of the anode arc root. The resulting fluctuations of voltage and thermal energy input introduce an undesirable element in the spray process. This paper deals with the effects of these arc instabilities on the plasma jet, and the behavior of particles injected in the flow. The first part refers to the formation of the plasma jet. Measurements show that the static behavior of the arc depends strongly upon the plasma-forming gas mixture, especially the mass flow rate, of the heavy gas, injection mode, nozzle diameter, and arc current. These parameters control the electric field in the arc column, the arc length, its stability, and the gas velocity and temperature. The dynamic behavior of the arc is examined to determine how the tempeature and velocity of the plasma gas vary with voltage variations. Relationships between the gas velocity at the nozzle exit and the lifetime of the arc roots, and the independent operating parameters of the gun can be established from a dimensional analysis. The second part discusses the interaction between the plasma jet and the particles injected into the flow. The parameters controlling particle injection and trajectory are examined to determine how injection velocity must vary with particle size and density to achieve a given trajectory. The effect of the transverse injection of the powder carrier gas is investigated using a 3-D computational fluid dynamics code. Finally, the effect of the jet fluctuations on particle trajectory is studied under the assumption that the jet velocity follows the voltage variation. The result is a continuous variation of the particle spray jet position in the flow. Experimental observations confirm the model predictions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 29 (1983), S. 236-243 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Measurements were made of the two-dimensional flow and temperature field in a d.c. plasma jet under different operating conditions. The particle velocity and the in-flight particle temperature were also measured for narrow cuts of alumina powders, of mean particle diameters of 18, 23, 39 and 46 μm, injected in the jet. The results are compared with the predictions of a one-dimensional mathematical model. The measured and computed particle velocities are in good agreement. This is, however, not the case for the particle temperature where considerable differences are observed. An attempt is made to determine the parameters which are often unduly neglected in modelling work and to identify the areas where further work is needed.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 34 (1988), S. 567-573 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A study was carried out of the momentum and the heat transfer to fine alumina particles injected into a DC plasma jet. Measurements are reported of particle number flux distribution, particle velocity, and inflight particle surface temperature under different operating conditions. The results show that the particle trajectories and associated particle flux distribution depends to a large extent on the particle injection velocity. The maximum particle velocity and surface temperature are noted, however, to remain close to the centerline of the jet, independent of the particle injection conditions. The maximum surface temperature reached by the particles increases with increasing plasma power and the use of an Ar/H2 plasma gas (17 vol. % H2) compared to that for a pure argon plasma.The particle velocity data are in good agreement with the predictions of a two-dimensional mathermatical model used for the calculation of the particle trajectories and temperature history. The model predictions, however, agreed only in trend with the measured particle surface temperatures. Deviations between the two could still be observed at large distances from the point of injection of the powder. The computed particle number flux distributions were narrower than the measured profiles, which can be attributed to the fact that the model did not include, at this stage, turbulent particle diffusion effects.
    Additional Material: 17 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1997-08-01
    Print ISSN: 0040-6090
    Electronic ISSN: 1879-2731
    Topics: Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...