ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-19
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: Journal of Aircraft (ISSN 0021-8669); 27; 577-582
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: The development of Short Takeoff Vertical Landing (STOVL) aircraft has historically been an empirical- and experienced-based technology. A 3-D turbulent flow CFD code was used to calculate the hot gas environment around an STOVL aircraft operating in ground proximity. Preliminary calculations are reported for a typical STOVL aircraft configuration to identify key features of the flow field, and to demonstrate and assess the capability of current 3-D CFD codes to calculate the temperature of the gases ingested at the engine inlet as a function of flow and geometric conditions.
    Keywords: AERODYNAMICS
    Type: NASA, Ames Research Center, NASA Computational Fluid Dynamics Conference. Volume 2: Sessions 7-12; p 291-310
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-05
    Description: There is renewed interest in cryogenic oxygen storage for an advanced second-generation orbital maneuvering system and reaction control systems in a low Earth orbit because cryogenic propellants are more energetic and environmentally friendly than current storable propellants. Unfortunately, heat transfer or heat leak into these storage systems increases tank pressure. On Earth, pressure is easily controlled by venting from the gaseous, or ullage, space above the liquid. In low gravity, the location of vapor is unknown and direct venting would expel liquid. Historically, upper stages have used auxiliary thrusters to resettle the tank contents and fix the location of the ullage space in orbit.
    Keywords: Spacecraft Instrumentation and Astrionics
    Type: Research and Technology 2004; NASA/TM-2005-213419
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: The development of Short Takeoff Vertical Landing (STOVL) aircraft has historically been an empirical- and experience-based technolgoy. In this study, a 3-D turbulent flow CFD code was used to calculate the hot gas environment around an STOVL aircraft operating in ground proximity. Preliminary calculations are reported for a typical STOVL aircraft configuration to identify key features of the flow field, and to demonstrate and assess the capability of current 3-D CFD codes to calculate the temperature of the gases ingested at the engine inlet as a function of flow and geometric conditions.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: AIAA PAPER 88-2882
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: The development of Short Takeoff Vertical Landing (STOVL) aircraft has historically been an empirical- and experience-based technology. In this study, a 3-D turbulent flow CFD code was used to calculate the hot gas environment around an STOVL aircraft operating in ground proximity. Preliminary calculations are reported for a typical STOVL aircraft configuration to identify key features of the flow field, and to demonstrate and assess the capability of current 3-D CFD codes to calculate the temperature of the gases ingested at the engine inlet as a function of flow and geometric conditions.
    Keywords: AERONAUTICS (GENERAL)
    Type: NASA-TM-100895 , E-4138 , NAS 1.15:100895 , AIAA PAPER 88-2882
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: The Space Station uses small rocket motors, called thrusters, for orientation control. Because of the lack of viable design tools for small rockets, the initial thruster design was basically a very small version of a large rocket motor. Thrust measurements of the initial design were lower than predicted. To improve predictions it was decided to develop a version of the RPLUS2D reacting flow code for thruster calculations. RPLUS2D employs an implicit finite volume, lower-upper symmetric successive overrelaxation (LU-SSOR) scheme for solving the complete two-dimensional Navier-Stokes equations and species transport equations in a coupled and very efficient manner. The combustion processes are modeled by a 9-species, 18 step finite-rate chemistry model, and the turbulence is simulated by a Baldwin-Lomax algebraic model. The code is extended to handle multiple subsonic inlet conditions where the total mass flow is governed by conditions calculated at the thruster-throat. Results are shown for a thruster design where the overall mixture ratio is hydrogen rich. A calculation of a large area ratio divergent nozzle is also presented.
    Keywords: SPACECRAFT PROPULSION AND POWER
    Type: AIAA PAPER 89-2793
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-12
    Description: Preliminary design trades are presented for liquid hydrogen fuel systems for remotely-operated, high-altitude aircraft that accommodate three different propulsion options: internal combustion engines, and electric motors powered by either polymer electrolyte membrane fuel cells or solid oxide fuel cells. Mission goal is sustained cruise at 60,000 ft altitude, with duration-aloft a key parameter. The subject aircraft specifies an engine power of 143 to 148 hp, gross liftoff weight of 9270 to 9450 lb, payload of 440 lb, and a hydrogen fuel capacity of 2650 to 2755 lb stored in two spherical tanks (8.5 ft inside diameter), each with a dry mass goal of 316 lb. Hydrogen schematics for all three propulsion options are provided. Each employs vacuum-jacketed tanks with multilayer insulation, augmented with a helium pressurant system, and using electric motor driven hydrogen pumps. The most significant schematic differences involve the heat exchangers and hydrogen reclamation equipment. Heat balances indicate that mission durations of 10 to 16 days appear achievable. The dry mass for the hydrogen system is estimated to be 1900 lb, including 645 lb for each tank. This tank mass is roughly twice that of the advanced tanks assumed in the initial conceptual vehicle. Control strategies are not addressed, nor are procedures for filling and draining the tanks.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2009-215521 , E-16800
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: A thermodynamic vent system for a cryogenic nitrogen tank was tested in a vacuum chamber simulating oxygen storage in low earth orbit. The nitrogen tank was surrounded by a cryo-shroud at -40 F. The tank was insulated with two layers of multi-layer insulation. Heat transfer into cryogenic tanks causes phase change and increases tank pressure which must be controlled. A thermodynamic vent system was used to control pressure as the location of vapor is unknown in low gravity and direct venting would be wasteful. The thermodynamic vent system consists of a Joule-Thomson valve and heat exchanger installed on the inlet side of the tank mixer-pump. The combination is used to extract thermal energy from the tank fluid, reducing temperature and ullage pressure. The system was sized so that the tank mixer-pump operated a small fraction of the time to limit motor heating. Initially the mixer used sub-cooled liquid to cool the liquid-vapor interface inducing condensation and pressure reduction. Later, the thermodynamic vent system was used. Pressure cycles were performed until steady-state operation was demonstrated. Three test runs were conducted at tank fills of 97, 80, and 63 percent. Each test was begun with a boil-off test to determine heat transfer into the tank. The lower tank fills had time averaged vent rates very close to steady-state boil-off rates showing the thermodynamic vent system was nearly as efficient as direct venting in normal gravity.
    Keywords: Aeronautics (General)
    Type: NASA/TM-2004-213193 , AIAA Paper 2004-3838 , 40th Joint Propulsion Conference and Exhibit; Jul 11, 2004 - Jul 14, 2004; Fort Lauderdale, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: The space station uses small rocket motors, called thrusters, for orientation control. Because of the lack of viable design tools for small rockets, the initial thruster design was basically a very small version of a large rocket motor. Thrust measurements of the initial design were lower than predicted. To improve predictions it was decided to develop a verison of the RPLUS2D reacting flow code for thruster calculations. RPLUS2D employs an implicit finite volume, lower-upper symmetric successive overrelaxation (LU-SSOR) scheme for solving the complete two-dimensional Navier-Stokes equations and species transport equations in a coupled and very efficient manner. The combustion processes are modeled by a 9-species, 18 step finite-rate chemistry model, and the turbulence is simulated by a Baldwin-Lomax algebraic model. The code is extended to handle multiple subsonic inlet conditions where the total mass flow is governed by conditions calculated at the thruster-throat. Results are shown for a thruster design where the overall mixture ratio is hydrogen rich. A calculation of a large area ratio divergent nozzle is also presented.
    Keywords: SPACECRAFT PROPULSION AND POWER
    Type: NASA-TM-102135 , E-4932 , NAS 1.15:102135 , AIAA PAPER 89-2793 , Joint Propulsion Conference; Jul 10, 1989 - Jul 12, 1989; Monterey, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-10
    Description: The objective of this thesis is to further develop and test a stochastic model of turbulent combustion in recirculating flows. There is a requirement to increase the accuracy of multi-dimensional combustion predictions. As turbulence affects reaction rates, this interaction must be more accurately evaluated. In this work a more physically correct way of handling the interaction of turbulence on combustion is further developed and tested. As turbulence involves randomness, stochastic modeling is used. Averaged values such as temperature and species concentration are found by integrating the probability density function (pdf) over the range of the scalar. The model in this work does not assume the pdf type, but solves for the evolution of the pdf using the Monte Carlo solution technique. The model is further developed by including a more robust reaction solver, by using accurate thermodynamics and by more accurate transport elements. The stochastic method is used with Semi-Implicit Method for Pressure-Linked Equations. The SIMPLE method is used to solve for velocity, pressure, turbulent kinetic energy and dissipation. The pdf solver solves for temperature and species concentration. Thus, the method is partially familiar to combustor engineers. The method is compared to benchmark experimental data and baseline calculations. The baseline method was tested on isothermal flows, evaporating sprays and combusting sprays. Pdf and baseline predictions were performed for three diffusion flames and one premixed flame. The pdf method predicted lower combustion rates than the baseline method in agreement with the data, except for the premixed flame. The baseline and stochastic predictions bounded the experimental data for the premixed flame. The use of a continuous mixing model or relax to mean mixing model had little effect on the prediction of average temperature. Two grids were used in a hydrogen diffusion flame simulation. Grid density did not effect the predictions except for peak temperature and tangential velocity. The hybrid pdf method did take longer and required more memory, but has a theoretical basis to extend to many reaction steps which cannot be said of current turbulent combustion models.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-1998-208823 , E-11430 , NAS 1.15:208823
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...