ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 310 (1984), S. 602-604 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] System I involves the poly(CD)-directed oligomerization Of guanosine 5'-phospho-2-methylimidazole (2-MeImpG) in the presence of Mg2*. D- and L-2-MeImpG were synthesized from their respective 5'-nucleotides7, and all other procedures were carried out as described previously5. Figure 2 shows HPLC ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1994-10-15
    Description: This study compares the pharmacokinetic and the antithrombotic properties of two pentasaccharides with high affinity to antithrombin III with those of a conventional low molecular weight heparin, CY216, in the rabbit. On a weight basis, SR 90107A/ORG 31540 (natural pentasaccharide [NPS]) and SR 80027A/ORG 31550 (sulfated pentasaccharide [SPS]) were, respectively, 4.7 and 26 times more potent antifactor Xa inhibitory agents than CY216. They were devoid of antithrombin activity, whereas the antifactor Xa/antithrombin ratio of CY216 was 3.8. After bolus intravenous administration, the clearance (mL/kg/h) of CY216 decreased from 91 +/- 27 for the dose of 12.5 U/kg to 49 +/- 14 for the dose of 50 U/kg and then remained constant up to the highest dose tested (500 U/kg). The clearance of NPS was unrelated to the dose and comparable to that of CY216 over 50 U/kg, whereas that of SPS was 10 times lower. Consistent results were observed after continuous intravenous infusions for 9 hours and subcutaneous administration. The duration of the antithrombotic effect was compared after a single subcutaneous injection of 250 U/kg of either compound in the stasis-Wessler model using human serum as thrombogenic stimulus. Two hours after the injection, the three compounds provided a thrombus prevention of greater than 95% and mean plasma activities of 0.8, 0.9, and 1.9 U/mL for CY216, NPS, and SPS, respectively. Twelve hours after injection, the antithrombotic effects of CY216 and NPS had totally vanished, whereas that of SPS was 68%. At that time, the plasma anti-Xa activities were less than 0.06 U/mL for CY216 and NPS, but 1.1 U/mL for SPS. For the latter compound, significant antithrombotic effects and detectable anti-Xa activities were still recorded 48 hours after the injection. The antithrombotic potency of the three compounds was also compared as their ability to inhibit the growth of a standardized venous thrombosis during 4 hours. The lowest total doses providing the maximum inhibitory effect were 3,125, 1,428, and 62 micrograms/kg for CY216, NPS, and SPS, respectively. These doses generated mean steady state antifactor Xa activities of 1.06, 1.5, and 1.2 anti-Xa U/mL, respectively. These observations indicate that the amplification mechanisms triggered by thrombin bound to fibrin and leading to the generation of new thrombin are essential to ensure venous thrombosis growth and that these mechanisms may be efficiently inhibited by pure antifactor Xa targeting agents.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1994-10-15
    Description: This study compares the pharmacokinetic and the antithrombotic properties of two pentasaccharides with high affinity to antithrombin III with those of a conventional low molecular weight heparin, CY216, in the rabbit. On a weight basis, SR 90107A/ORG 31540 (natural pentasaccharide [NPS]) and SR 80027A/ORG 31550 (sulfated pentasaccharide [SPS]) were, respectively, 4.7 and 26 times more potent antifactor Xa inhibitory agents than CY216. They were devoid of antithrombin activity, whereas the antifactor Xa/antithrombin ratio of CY216 was 3.8. After bolus intravenous administration, the clearance (mL/kg/h) of CY216 decreased from 91 +/- 27 for the dose of 12.5 U/kg to 49 +/- 14 for the dose of 50 U/kg and then remained constant up to the highest dose tested (500 U/kg). The clearance of NPS was unrelated to the dose and comparable to that of CY216 over 50 U/kg, whereas that of SPS was 10 times lower. Consistent results were observed after continuous intravenous infusions for 9 hours and subcutaneous administration. The duration of the antithrombotic effect was compared after a single subcutaneous injection of 250 U/kg of either compound in the stasis-Wessler model using human serum as thrombogenic stimulus. Two hours after the injection, the three compounds provided a thrombus prevention of greater than 95% and mean plasma activities of 0.8, 0.9, and 1.9 U/mL for CY216, NPS, and SPS, respectively. Twelve hours after injection, the antithrombotic effects of CY216 and NPS had totally vanished, whereas that of SPS was 68%. At that time, the plasma anti-Xa activities were less than 0.06 U/mL for CY216 and NPS, but 1.1 U/mL for SPS. For the latter compound, significant antithrombotic effects and detectable anti-Xa activities were still recorded 48 hours after the injection. The antithrombotic potency of the three compounds was also compared as their ability to inhibit the growth of a standardized venous thrombosis during 4 hours. The lowest total doses providing the maximum inhibitory effect were 3,125, 1,428, and 62 micrograms/kg for CY216, NPS, and SPS, respectively. These doses generated mean steady state antifactor Xa activities of 1.06, 1.5, and 1.2 anti-Xa U/mL, respectively. These observations indicate that the amplification mechanisms triggered by thrombin bound to fibrin and leading to the generation of new thrombin are essential to ensure venous thrombosis growth and that these mechanisms may be efficiently inhibited by pure antifactor Xa targeting agents.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1998-06-01
    Description: SANORG 34006 is a new sulfated pentasaccharide obtained by chemical synthesis. It is an analog of the “synthetic pentasaccharide” (SR 90107/ ORG 31540) which represents the antithrombin (AT) binding site of heparin. SANORG 34006 showed a higher affinity to human AT than SR 90107/ORG 31540 (kd = 1.4 ± 0.3 v 48 ± 11 nmol/L), and it is a potent and selective catalyst of the inhibitory effect of AT on factor Xa (1,240 ± 15 anti–factor Xa U/mg v850 ± 27 anti-factor Xa U/mg for SR 90107/ORG 31540). In vitro, SANORG 34006 inhibited thrombin generation occurring via both the extrinsic and intrinsic pathway. After intravenous (IV) or subcutaneous (SC) administration to rabbits, SANORG 34006 displayed a long-lasting anti–factor Xa activity and inhibition of thrombin generation (TG) ex vivo. SANORG 34006 was slowly eliminated after IV or SC administration to rats, rabbits, and baboons, showed exceptionally long half-lives (between 9.2 hours in rats and 61.9 hours in baboons), and revealed an SC bioavailability near 100%. SANORG 34006 displayed antithrombotic activity by virtue of its potentiation of the anti–factor Xa activity of AT. It strongly inhibited thrombus formation in experimental models of thromboplastin/stasis-induced venous thrombosis in rats (IV) and rabbits (SC) (ED50values = 40.0 ± 3.4 and 105.0 ± 9.4 nmol/kg, respectively). The duration of its antithrombotic effects closely paralleled the ex vivo anti–factor Xa activity. SANORG 34006 enhanced rt-PA–induced thrombolysis and inhibited accretion of125I-fibrinogen onto a preformed thrombus in the rabbit jugular vein suggesting that concomitant use of SANORG 34006 during rt-PA therapy might be helpful in facilitating thrombolysis and preventing fibrin accretion onto the thrombus under lysis. Contrary to standard heparin, SANORG 34006 did not enhance bleeding in a rabbit ear incision model at a dose that equals 10 times the antithrombotic ED50 in this species and, therefore, exhibited a favorable therapeutic index. We suggest that SANORG 34006 is a promising compound in the treatment and prevention of various thrombotic diseases.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1998-06-01
    Description: SANORG 34006 is a new sulfated pentasaccharide obtained by chemical synthesis. It is an analog of the “synthetic pentasaccharide” (SR 90107/ ORG 31540) which represents the antithrombin (AT) binding site of heparin. SANORG 34006 showed a higher affinity to human AT than SR 90107/ORG 31540 (kd = 1.4 ± 0.3 v 48 ± 11 nmol/L), and it is a potent and selective catalyst of the inhibitory effect of AT on factor Xa (1,240 ± 15 anti–factor Xa U/mg v850 ± 27 anti-factor Xa U/mg for SR 90107/ORG 31540). In vitro, SANORG 34006 inhibited thrombin generation occurring via both the extrinsic and intrinsic pathway. After intravenous (IV) or subcutaneous (SC) administration to rabbits, SANORG 34006 displayed a long-lasting anti–factor Xa activity and inhibition of thrombin generation (TG) ex vivo. SANORG 34006 was slowly eliminated after IV or SC administration to rats, rabbits, and baboons, showed exceptionally long half-lives (between 9.2 hours in rats and 61.9 hours in baboons), and revealed an SC bioavailability near 100%. SANORG 34006 displayed antithrombotic activity by virtue of its potentiation of the anti–factor Xa activity of AT. It strongly inhibited thrombus formation in experimental models of thromboplastin/stasis-induced venous thrombosis in rats (IV) and rabbits (SC) (ED50values = 40.0 ± 3.4 and 105.0 ± 9.4 nmol/kg, respectively). The duration of its antithrombotic effects closely paralleled the ex vivo anti–factor Xa activity. SANORG 34006 enhanced rt-PA–induced thrombolysis and inhibited accretion of125I-fibrinogen onto a preformed thrombus in the rabbit jugular vein suggesting that concomitant use of SANORG 34006 during rt-PA therapy might be helpful in facilitating thrombolysis and preventing fibrin accretion onto the thrombus under lysis. Contrary to standard heparin, SANORG 34006 did not enhance bleeding in a rabbit ear incision model at a dose that equals 10 times the antithrombotic ED50 in this species and, therefore, exhibited a favorable therapeutic index. We suggest that SANORG 34006 is a promising compound in the treatment and prevention of various thrombotic diseases.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1984-08-01
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-18
    Description: An experimental study is reported which shows that poly(C)-directed oligomerization of activated guanosine mononucleotides proceeds readily if the monomers are of the same optical handedness as the template, and is far less efficient if the monomers are of the opposite handedness. However, in template-directed reactions with a racemic mixture, monomers of the opposite handedness to the template are incorporated as chain terminators at the 2'(3') end of the products. This inhibition raises an important problem for many theories of the origin of life.
    Keywords: SPACE BIOLOGY
    Type: Nature (ISSN 0028-0836); 310; 602-604
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...