ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Tuberising stolon tips of potato (Solanum tuberosum L. cv. Record) accumulate starch and sucrose but the hexose content, particularly fructose, declines rapidly. Similar changes occur in the region 2 cm behind the swelling apex but the decline in glucose is far more pronounced than in the developing tuber. Tuberisation is characterised by an apparent switch from an invertase-dominated sucrolytic system (both acid and alkaline invertases [EC 3.2.1.26] are present) to one dominated by sucrose synthase (EC 2.4.1.13). Sucrose synthase and fructokinase (EC 2.7.1.4) activities were, at a maximum, ca 10- and 5-fold higher, respectively in the swelling stolon tip compared with the non-tuberising region. At the highest starch contents attained, the starch level in the young developing tuber was approximately double that in the adjacent non-tuberising stolon region. Immunoblots revealed that developmental changes in sucrose synthase. fructokinase and alkaline invertase polypeptides corresponded with enzyme activities. Antibodies raised against the N-terminal amino acid sequence of a soluble invertase purified from mature tubers did not detect significant quantities of a polypeptide in stolons and young, developing tubers. Antibodies raised against an in vitro expression product of an apoplastic invertase cloned from a leaf cDNA library detected a polypeptide in developing tubers but not in mature ones. However, expression of the protein did not correlate well with acid invertase activity during early tuber formation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 186 (2000), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Saccharomyces cerevisiae cells incubated with D-glucose (D-Glc), D-galactose or D-mannose (D-Man) synthesised D-erythroascorbic acid (D-EAA) but not L-ascorbic acid (L-AA). Accumulation of D-EAA was observed in cells incubated with D-arabinose (D-Ara) whilst accumulation of L-AA occurred in cells incubated with L-galactose (L-Gal), L-galactono-1,4-lactone and L-gulono-1,4-lactone. When S. cerevisiae cells were incubated with D-[U-14C]Glc, D-[U-14C]Man or L-[1-14C]Gal, incorporation of radioactivity into L-AA was observed only with L-[1-14C]Gal. Pre-incubation of yeast cells with D-Ara substantially reduced the incorporation of L-[1-14C]Gal into L-AA. Our results indicate that, under appropriate conditions, yeast cells can synthesise L-AA via the pathway naturally used for D-EAA biosynthesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Fruit starch reserves can be an important contributor to the sugar content of some ripe fruit, and despite the relatively high financial premiums (compared to other fruit) commanded by ripe strawberries, neither their starch or sugar biochemistry has been examined in detail. This study assessed the rate of starch biosynthesis and breakdown in developing strawberry and sought to determine the temporal changes in the activities of selected enzymes known to be involved in sucrose-starch interconversions. Scanning electron microscopy revealed that starch levels appeared greatest in immature strawberry (Fragaria×ananassa, cv. Elsanta) at 7 days postanthesis, as evidenced by a decrease in the number of cells containing starch granules as ripening progressed. Levels of key enzymes of starch and sugar metabolism estimated using Western blotting and enzyme activity analysis showed that activities did not correlate with antigen levels. In particular, enzyme activity recovery experiments indicated that losses were due to non-proteinaceous inhibitors, and in particular protein binding: highlighting the potential for misinterpretation of enzyme activity data gathered from ripening (strawberry) fruit tissue extracts. Consequently, in vitro experiments using [U-14C] glucose revealed that incorporation to starch is low (11%) at the earliest developmental stages when starch content is greatest. Starch synthesis rate then declines to non-detectable levels as fruit expand and ripen. These results show that starch accumulates extremely early in the fruit formation process and that starch degradation predominates during fruit growth and development. We estimate that breakdown of transient starch can contribute up to 3% of the sugar accumulated in ripe fruit.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2048
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. A method was developed for the purification of main intermediates and storage products of leaves and tubers of potato for analysis of their 13C content. The method was tested for recovery of metabolites and carbon isotope discrimination during the purification process. Leaf metabolite δ13C values showed an enrichment of starch relative to sucrose and citrate. This result is in agreement with previous findings in other higher plants and indicates the existence of isotope discrimination steps during transport and metabolism of triose-phosphates in potato leaf mesophyll cells. Active anaplerotic replenishment of the tricarboxylic acid cycle in the leaves of the plants investigated was also deduced from the significant 13C enrichment of malate relative to citrate and asparagine/aspartate relative to glutamine/glutamate. Analysis of tuber metabolite δ13C values showed no difference between starch and sucrose. However, tuber sucrose appeared significantly enriched compared with leaf sucrose and also relative to tuber citrate and malate. This finding suggests the existence of sites of isotopic discrimination during sucrose processing in developing tubers. It also confirms that metabolic cycles of sucrose synthesis and breakdown and of hexose-phosphate/triose-phosphate interconversion, which have been described in excised tuber tissue, also occur in intact organs. The δ13C values were also used to estimate the metabolic rate of carbon oxidation in developing tubers on the assumption that pyruvate dehydrogenase is the main site of isotopic discrimination in the tuber cells. The result obtained was in agreement with the available literature, suggesting that analyses of natural isotopic distribution in plant products may be a useful tool for the study of metabolic processes and sink-source relationships in intact plants.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-2048
    Keywords: Pyrophosphate: fructose-6-phosphate phosphotransferase ; Solanum ; Sucrose ; Transgenic plant (antisense)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Potato (Solanum tuberosum L.) plants were transformed with “antisense” constructs to the genes encoding the α-and β-subunits of pyrophosphate: fructose-6-phosphate phosphotransferase (PEP), their expression being driven by the constitutive CaMV 35S promotor. (i) In several independent transformant lines, PFP expression was decreased by 70–90% in growing tubers and by 88–99% in stored tubers. (ii) The plants did not show any visual phenotype, reduction of growth or decrease in total tuber yield. However, the tubers contained 20–40% less starch than the wild type. Sucrose levels were slightly increased in growing tubers, but not at other stages. The rates of accumulation of sucrose and free hexoses when tubers were stored at 4° C and the final amount accumulated were the same in antisense and wild-type tubers. (iii) Metabolites were investigated at four different stages in tuber life history; growing (sink) tubers, mature tubers, cold-sweetening tubers and sprouting (source) tubers. At all stages, compared to the wild type, antisense tubers contained slightly more hexose-phosphates, two- to threefold less glycerate-3-phosphate and phosphoenolpyruvate and up to four-to fivefold more fructose-2,6-bisphosphate. (iv) There was no accumulation or depletion of inorganic pyrophosphate (PPi), or of UDP-glucose relative to the hexose-phosphates. (v) The pyruvate content was unaltered or only marginally decreased, and the ATP/ADP ratio did not change. (vi) Labelling experiments on intact tubers did not reveal any significant decrease in the unidirectional rate of metabolism of [U-14C]sucrose to starch, organic acids or amino acids. Stored tubers with an extreme (90%) reduction of PFP showed a 25% decrease in the metabolism of [U14-C] sucrose. (vii) Metabolism (cycling) of [U-14C]glucose to surcrose increased 15-fold in discs from growing antisense tubers, compared with growing wild-type tubers. Resynthesis of sucrose was increased by 10–20% when discs from antisense and wild-type tubers stored at 4° C (cold sweetening) were compared. The conversion of [U-14C]glucose to starch was decreased by about 30% and 50%, respectively. (viii) The randomisation of [1-13C]glucose in the glucosyl and fructosyl moieties of sucrose was decreased from 13.8 and 15.7% in the wild type to 3.6 and 3.9% in an antisense transformant. Simultaneously, randomisation in glucosyl residues isolated from starch was reduced from 14.4 to 4.1%. (ix) These results provide evidence that PFP catalyses a readily reversible reaction in tubers, which is responsible for the recycling of label from triose-phosphates to hexose-phosphates, but with the net reaction in the glycolytic direction. The results do not support the notion that PFP is involved in regulating the cytosolic PPi concentration. They also demonstrate that PFP does not control the rate of glycolysis, and that tubers contain exessive capacity to phosphorylate fructose-6-phosphate. The decreased concentration of phosphoenolpyruvate and glycerate-3-phosphate compensates for the decrease of PFP protein by stimulating ATP-dependent phosphofructokinase, and by stimulating fructose-6-phosphate,2-kinase to increase the fructose-2,6-bisphosphate concentration and activate the residual PFP. The decreased starch accumulation is explained as an indirect effect, caused by the increased rate of resynthesis (cycling) of sucrose in the antisense tubers.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-2048
    Keywords: Key words:Gracilaria (starch synthesis) ; Rhodophyceae ; Starch synthase ; Starch synthesis ; UDPglucose
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. Red algae (Rhodophyceae) are photosynthetic eukaryotes that accumulate starch granules in the cytosol. Starch synthase activity in crude extracts of Gracilaria tenuistipitata Chang et Xia was almost 9-fold higher with UDP[U-14C]glucose than with ADP[U-14C]glucose. The activity with UDP[U-14C]glucose was sensitive to proteolytic and oxidative inhibition during extraction whilst the activity with ADP[U-14C]glucose appeared unaffected. This indicates the presence of separate starch synthases with different substrate specificities in G. tenuistipitata. The UDPglucose: starch synthase was purified and characterised. The enzyme appears to be a homotetramer with a native Mr of 580 kDa and displays kinetic properties similar to other α-glucan synthases such as stimulation by citrate, product (UDP) inhibition and broad primer specificity. We propose that this enzyme is involved in cytosolic starch synthesis in red algae and thus is the first starch synthase described that utilises UDPglucose in vivo. The biochemical implications of the different compartmentalisation of starch synthesis in red algae and green algae/plants are also discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Planta 198 (1996), S. 179-185 
    ISSN: 1432-2048
    Keywords: Fructose ; Phloem ; Solanum (hexose metabolism) ; Sucrose ; Sucrose synthase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract This work aimed at establishing whether labelled precursors supplied to discs excised from developing potato (Solanum tuberosum L.) tubers can be metabolised prior to uptake. Discs were excised from developing tubers and incubated with 25 mM 2-(N-morpholino)-ethanesulfonic acid (pH 6.5) and 300 mM mannitol. Analyses of the bathing medium at the end of the incubation time revealed the presence of sucrose, hexoses and metabolic intermediates such as hexose phosphate (hexose-P), uridine 5′-diphosphate (UDP) and uridine 5′-diphosphoglucose (UDPGlc). When [U-14C]glucose or [U-14C]fructose were included in the bathing medium, labelled sucrose, hexoses, hexose-P and UDPGlc were detected in the medium itself at the end of the incubation time. Metabolism of [U-14C]fructose in the medium was much more extensive than that of [U-14C]glucose. Analysis of intracellular label distribution in discs incubated with a medium containing [U-14C]fructose and active or inactive acid invertase demonstrated uptake of labelled sucrose synthesised in the medium. When the discs were incubated with UDP[U-14C]glucose radioactivity was detected in sucrose and hexose-P in the medium at the end of incubation. The conclusion is drawn that metabolic intermediates, sucrose and hexoses are readily interconverted in the medium of incubation of tuber discs. When the bathing medium contained unlabelled fructose (10 mM) the conversion of [U-14C]fructose and UDP[U-14C]glucose into sucrose was markedly stimulated. The inclusion of unlabelled glucose in the medium had no effect on metabolism of precursors. These results are interpreted as evidence that sucrose synthesis in the bathing medium was catalysed by sucrose synthase. Assays of fructokinase, glucokinase and sucrose synthase activities in the bathing medium showed that release of enzymes from the tuber tissue into the medium occurred during incubation. However, the finding that these activities were substantially higher when assays were carried out in media containing discs indicates that the enzyme responsible for the metabolism of labelled precursors in the bathing medium were strongly associated with the tuber tissue. Repeated washings of the discs prior to incubation failed to prevent conversion of [U-14C]fructose in the medium. When the discs were incubated with the anionic dye lucifer yellow, fluorescence was localised in a layer of collapsed cells at the disc surface and (more intensely) in companion cells throughout the tissue. This suggests a possible involvement of phloem tissue in the metabolic events observed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Planta 198 (1996), S. 186-196 
    ISSN: 1432-2048
    Keywords: Carbohydrate metabolism ; Fructokinase ; Fructose ; Solanum (hexose metabolism) ; Sucrose metabolism ; Sucrose synthase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Metabolism of radiolabelled hexoses by discs excised from developing potato (Solanum tuberosum L.) tubers was been investigated in the presence of acid invertase to prevent accumulation of labelled sucrose in the bathing medium (Viola, 1996, Planta 198: 179–185). When the discs were incubated with either [U-14C]glucose or [U-14C]fructose without unlabelled hexoses, the unidirectional rate of sucrose synthesis was insignificant compared with that of sucrose breakdown. The inclusion of unlabelled fructose in the medium induced a dramatic increase in the unidirectional rate of sucroses synthesis in the tuber discs. Indeed, the decline in the sucrose content observed when discs were incubated without exogenous sugars could be completely prevented by including 300 mM fructose in the bathing medium. On the other hand, the inclusion of unlabelled glucose in the medium did not significantly affect the relative incorporation of [U-14C]glucose to starch, sucrose or glycolytic products. Substantial differences in the intramolecular distribution of 13C enrichment in the hexosyl moieties of sucrose were observed when the discs were incubated with either [2-13C]fructose or [2-13C]glucose. The pattern of 13C enrichment distribution in sucrose suggested that incoming glucose was converted into sucrose via the sucrose-phosphate synthase pathway whilst fructose was incorporated directly into sucrose via sucrose synthase. Quantitative estimations of metabolic fluxes in vivo in the discs were also provided. The apparent maximal rate of glucose phosphorylation was close to the extractable maximum catalytic activity of glucokinase. On the other hand, the apparent maximal rate of fructose phosphorylation was much lower than the maximum catalytic activity of fructokinase, suggesting that the activity of the enzyme (unlike that of glucokinase) was regulated in vivo. Although in the discs incubated with or without fructose the rates of starch synthesis or glycolysis were similar, the relative partitioning of metabolic intermediates into sucrose was much higher in discs incubated with fructose (0.6% and 32.6%, respectively). It is hypothesised that the equilibrium of the reaction catalysed by sucrose synthase in vivo is affected in discs incubated with fructose as a result of the accumulation of the sugar in the tissue. This results in the onset of sucrose cycling. Incubation with glucose enhanced all metabolic fluxes. In particular, the net rate of starch synthesis increased from 2.0 μmol · hexose · g FW−1 · h−1 in the absence of exogenous glucose to 3.7 μmol · hexose · g FW−1 · h−1 in the presence of 300 mM glucose. These data are taken as an indication that the regulation of fructokinase in vivo may represent a limiting factor in the utilisation of sucrose for biosynthetic processes in developing potato tubers.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Plant molecular biology 33 (1997), S. 573-581 
    ISSN: 1573-5028
    Keywords: biochemical systems ; control theory ; mathematical model ; metabolism ; non-linear systems ; thermodynamics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The application of mathematical theories to understanding the behaviour of complex biochemical systems is reviewed. Key aspects of behaviour are identified as the flux through particular pathways in a steady state, the nature and stability of dynamical states, and the thermodynamic properties of systems. The first of these is dealt primarily in theories of metabolic control, and metabolic control analysis (MCA) is an important example. The valid application of this theory is limited to steady-state systems, and the cases where the essential features of control can be derived from calibration experiments which perturb the state of the system by a sufficiently small amount from its operating point. In practice, time-dependent systems exist, it is not always possible to know a priori whether applied perturbations are sufficiently small, and important features of control may lie farther from the operating point than the application of the theory permits. The nature and stability of dynamical and thermodynamical states is beyond the scope of MCA. To understand the significance of these limitations fully, and to address the dynamical and thermodynamical properties, more complete theories are required. Non-linear systems theory offers the possibility of studying important questions regarding control of steady and dynamical states. It can also link to thermodynamic properties of the system including the energetic efficiency of particular pathways. However, its application requires a more detailed characterisation of the system under study. This extra detail may be an essential feature of the study of non-equilibrium states in general, and non-ideal pathways in particular. Progress requires considerably more widespread integration of theoretical and experimental approaches than currently exists.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...