ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  J. Geophys. Res., Tokyo, Terra Scientific Publishing Company, vol. 95, no. B13, pp. 21871-21884, pp. L07608, (ISBN: 0534351875, 2nd edition)
    Publication Date: 1990
    Keywords: Low frequency ... ; Data analysis / ~ processing ; Hydraulic fracturing ; Borehole geophys. ; Rock mechanics ; meta-stable ; JGR ; 8135 ; Tectonophysics: ; Hydrothermal ; systems ; (8424) ; 9350 ; Information ; Related ; to ; Geographic ; Region: ; North ; America
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-04-05
    Description: We apply a template matching method to detect and locate pre-eruptive earthquakes at Piton de la Fournaise volcano in 2014 and 2015. This approach enabled the detection of many events and unveiled persistent seismicity features through multiple eruptions. Shallow earthquakes define a ring shaped structure beneath the main crater. The repetitive occurrence of events along this structure suggests it corresponds to a pre-existing zone of weakness within the edifice. We also show evidence of deep magma transfer in 2015. More than 5000 deep earthquakes define an upward migration immediately followed by the occurrence of shallow events leading to an eruption 20 days later. This suggests the creation of a hydraulic connection between the lower part of the volcanic system and a magma reservoir located near sea level. We can envisage than such replenishments of the shallow reservoir occurred in the past but were undetected because of limited deep earthquake detections.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-04-09
    Description: The dynamics of the 2–12 January 2010 effusive eruption at Piton de la Fournaise volcano were examined through seismic and infrasound records, time-lapse photography, SO 2 flux measurements, deformation data and direct observations. Digital elevation models were constructed for four periods of the eruption, thus providing an assessment of the temporal evolution of the morphology, the volume and the extrusion rate of the lava flow. These data were compared to the continuous recording of the seismic and infrasonic waves, and a linear relationship was found between the seismic energy of the tremor and the lava extrusion rate. This relationship is supported by data from three other summit eruptions of Piton de la Fournaise and gives total volume and average lava extrusion rate in good agreement with previous studies. We can therefore provide an estimate of the lava extrusion rate for the January 2010 eruption with a very high temporal resolution. We found an average lava extrusion rate of 2.4 m 3 S −1 with a peak of 106.6 m 3 S −1 during the initial lava fountaining phase. We use the inferred average lava extrusion rate during the lava fountaining phase (30.2 m 3 S −1 ) to estimate the value of the initial overpressure in the magma reservoir, which we found to range from 3.7×10 6 Pa to 5.9×10 6 Pa. Finally, based on the estimated initial overpressure, the volume of magma expelled during the lava fountaining phase and geodetic data, we inferred the volume of the magma reservoir using a simple Mogi model, between 0.25km 3 and 0.54km 3 , which is in good agreement with previous studies.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-04-13
    Description: Piton de la Fournaise Volcano exhibits frequent eruptions preceded by seismic swarms and is a good target to test hypotheses about magmatically induced variations in seismic wave properties. We use the permanent station network and a portable broadband network to compare seismic anisotropy measured via shear wave splitting with geodetic displacements, ratios of compressional to shear velocity (Vp/Vs), earthquake focal mechanisms and ambient noise correlation analysis of surface wave velocities, and to examine velocity and stress changes from 2000 through 2012. Fast directions align radially to the central cone and parallel to surface cracks and fissures, suggesting stress-controlled cracks. High Vp/Vs ratios under the summit compared with low ratios under the flank suggest spatial variations in the proportion of fluid-filled versus gas-filled cracks. Secular variations of fast directions (ϕ) and delay times (dt) between split shear waves are interpreted to sense changing crack densities and pressure. Delay times tend to increase while surface wave velocity decreases before eruptions. Rotations of ϕ may be caused by changes in either stress direction or fluid pressure. These changes usually correlate with GPS baseline changes. Changes in shear wave splitting measurements made on multiplets yield several populations with characteristic delay times, measured incoming polarizations and fast directions, which change their proportion as a function of time. An eruption sequence on 14 October 2010 yielded over 2000 shear wave splitting measurements in a 14-hour period, allowing high-time-resolution measurements to characterize the sequence. Stress directions from a propagating dike model qualitatively fit the temporal change in splitting.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-12-09
    Description: Piton de la Fournaise (PdF) is recognised as one of the world's most active volcanoes in terms of eruptive frequency and the substantial quantity of lava produced. Yet, with the sole exception of rather modest intracrateric fumarole activity, this seems to be in contrast with an apparent absence of any type of natural fluid emission during periods of quiescence. Measurement campaigns were undertaken during a long-lasting quiescent period (2012-2014) and just after a short lived summit eruption (June 2014) in order to identify potential degassing areas in relation to the main structural features of the volcano (ex. rift zones) with the aim of developing a broader understanding of the geometry of the plumbing and degassing system. In order to assess the possible existence of anomalous soil CO 2 flux, 513 measurements were taken along transects roughly orthogonal to the known tectonic lineaments crossing PdF edifice. In addition, 53 samples of gas for C isotope analysis were taken at measurement points that showed a relatively high CO 2 concentration in the soil. CO 2 flux values range from 10 to 1300 g m −2 d −1 while δ 13 C are between -26.6 to -8‰. The results of our investigation clearly indicate that there is a strong spatial correlation between the anomalous high values of diffusive soil emissions and the main rift zones cutting the PdF massif and, moreover, that generally high soil CO 2 fluxes show a δ 13 C signature clearly related to a magmatic origin. This article is protected by copyright. All rights reserved.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-02-22
    Description: At shallow depth beneath the Earth's surface, magma propagates through strongly heterogeneous volcanic material. Inversion of buoyancy and/or solidification have strong impacts on the dynamics of propagation without any change of magma supply. In this paper, we study the spatial and time evolution of magma intrusions using induced seismicity. We propose a new method based on ratio analysis of estimates of radiated seismic intensities recorded at different stations during seismic swarms. By applying this method to the January 2010 Piton de la Fournaise volcano eruption, we image complex dike propagation dynamics which strongly differ from a model of constant velocity dike propagation. We provide a new method to image in real time the dynamics of dike propagation and to infer the position of eruptive fissures.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-03-29
    Description: Since the collapse of the Dolomieu crater floor at Piton de la Fournaise Volcano (la Réunion) in 2007, hundreds of seismic signals generated by rockfalls have been recorded daily at the Observatoire Volcanologique du Piton de la Fournaise (OVPF). To study rockfall activity over a long period of time, automated methods are required to process the available continuous seismic records. We present a set of automated methods designed to identify, locate and estimate the volume of rockfalls from their seismic signals. The method used to automatically discriminate seismic signals generated by rockfalls from other common events recorded at OVPF is based on fuzzy sets and has a success rate of 92%. A kurtosis-based automated picking method makes it possible to precisely pick the onset time and the final time of the rockfall-generated seismic signals. We present methods to determine rockfall locations based on these accurate pickings and a surface-wave propagation model computed for each station using a Fast Marching Method. These methods have successfully located directly observed rockfalls with an accuracy of about 100 meters. They also make it possible to compute the seismic energy generated by rockfalls, which is then used to retrieve their volume. The methods developed were applied to a dataset of 12,422 rockfalls that occurred over a period extending from the collapse of the Dolomieu crater floor in April 2007 to the end of the UnderVolc project in May 2011 to identify the most hazardous areas of the Piton de la Fournaise volcano summit.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-11-09
    Description: Volcanic eruptions impact on societal risk, and volcanic hazard assessment is a necessary ingredient for decision-makers. However, the prediction of volcanic eruptions remains challenging due to the complexity and the non-linearity of volcanic processes. Identified forerunners such as increasing seismicity or deformation of the volcanic edifice prior to eruption are not deterministic. In this study, we use statistical methods to identify and discriminate precursory patterns to eruptions, on three sets of observables of Piton de la Fournaise volcano. We analyzed the short-term (i.e. the inter-eruptive period) time series of the seismicity rate, the deformation and the seismic velocity changes (deduced from seismic noise cross-correlations) over the period 1999–2006, with two main goals. First, we characterize the average pre-eruptive time patterns before 22 eruptions using superposed epoch analysis for the three observables. Using daily rate values, we resolve (1) a velocity change within 100–50 days from the eruptions onsets, then a plateau value up to eruption onset; (2) a power law increase in seismicity rate from noise level 15–10 days before eruption time; (3) an increase of displacement rate on the eruption day. These results support a three step mechanism leading to magma transfers toward the surface. Second we use pattern recognition techniques and the formalization of error diagrams to quantify the predictive power of each forerunner either as used independently or as combined to each other. We show that when seismicity rate alone performs the best prediction in the failure to predict versus alarm duration space, the combination of the displacement and seismicity data reduces the false alarm rate. We further propose a tool which explores the prediction results in order to optimize prediction strategy for decision-makers, as a function of the risk value.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019
    Description: Abstract Magma propagation is an unsteady process controlled by magma‐crust interaction. To provide information on its dynamics, we invert complementary ground deformation data spanning the 8 hr preceding the 26 May 2016 eruption at Piton de la Fournaise (PdF) volcano (La Réunion, France). Data are inverted using 3‐D boundary element models combined with a Monte Carlo inversion method. The final geometry of the displacement source is determined based on four interferograms spanning the whole propagation phase while the dynamics of the propagation is inferred from temporal inversion of continuous Global Navigation Satellite System (GNSS) data, using the final geometry as an a priori to constrain the source. The best modeled magma path consists in a 2,700‐m‐long sill located 800 m above sea level and connected to the eruptive fissure by a subvertical dike. The quick opening of the horizontal part of the intrusion could have been favored by limited flank sliding during the early stage of propagation. The intrusion then stalled for ∼5 hr, while pressure increased slightly, until final upward propagation and eruption. Volume budget suggests that the eruption was fed by a single batch of magma quickly disconnected from its source. The delay prior to the eruption may reflect a limited magma supply. Finally, two mechanisms, potentially acting together, might have favored the eruption: a driving role of magmatic gas and/or, as often observed at Piton de la Fournaise, an eastward flank slip.
    Print ISSN: 2169-9313
    Electronic ISSN: 2169-9356
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-08-05
    Description: Detecting renewal of volcanic activity is a challenging task and even more difficult in tropical settings. Continuous measurements of soil CO 2 flux were carried out at the Piton de la Fournaise volcano during 2013-2016. Since this site is in the tropics, periods of heavy rainfall are in the norm. Measurements covered volcanic unrest after a hiatus of 3.5 years. We find that, while temperature has the strongest effect, extreme rainfall causes short-term noise. When corrected and filtered from the environmental influence soil CO 2 time series permit to detect a major deep magmatic event during March-April 2014, three months before the first eruption of the new activity phase. Correlation with geophysical datasets allow timing of further stages of upward fluid ascent. Our study validates soil CO 2 flux monitoring in tropical environments as a valuable tool to monitor magma transfer and to enhance understanding of volcano unrest down to the lithospheric mantle.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...