ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-4811
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0173-2803
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 14 (1976), S. 2575-2585 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Irradiation of sodium allylsulfonate in aqueous solution at high pressure (up to 9000 kg/cm2) gave a deliquescent white powder which is insoluble in organic solvent. The product was addition polymer of allylsulfonate from the high-resolution NMR and infrared spectra. The rate of polymerization was proportional to the third and second powers of monomer concentration in the initial and later stages, respectively. From the high dependence of the rate on monomer concentration, the reaction was deduced to proceed in an associated monomer or micelle. The rate of polymerization was increased by addition of sodium chloride. The G value for monomer consumption was about 104 at high pressure, which suggests that the degradative chain transfer is not important in the polymerization. Overall activation volumes were -7 and -5 ml/mole in the initial and later stages, respectively.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 16 (1978), S. 2607-2616 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The effect of radiation on polystyrene was studied in the presence and absence of silica gel by molecular weight measurement with GPC. Polystyrene crosslinked under vacuum in the absence of silica gel, but it either crosslinked or degraded by radiation, depending on the molecular weight of the polymer in the presence of silica gel. Part of the deposited polymer bonded to silica gel by radiation; the G value for graft-chain formation is in the range of 0.01-0.1. Irradiation of polystyrene grafted on silica gel resulted in degradation of the graft chain because of the transfer of energy from silica gel. The G value for main chain scission was about 2 when graft polymer was irradiated in the absence of homopolymer. The degradation of graft polymer was suppressed when the polymer was irradiated in the presence of homopolymer, and the amount of unextractable polymer from silica gel increased with increasing irradiation. This adds evidence to the estimation that an increase in grafting percent coupled with a slight decrease in molecular weight at a later stage of radiation-induced polymerization of styrene adsorbed on silica gel is due to a secondary effect of radiation on the polymer.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 17 (1979), S. 393-404 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The effect of dose rate on the rate of polymerization and molecular weight distribution of radiation-induced polymerization of styrene adsorbed on silica gel was studied in a wide dose rate range of 4.4 × 104 to 3 × 108 rad/hr by γ rays of 60Co and electron beams with a Cockcroft-Walton-type accelerator. Dose rate dependence on the initial rate of polymerization was about 1 below 3 × 107 rad/hr, and it decreased gradually at high dose rates. Throughout the dose rate range, graft polymerizations and homopolymerizations by cationic and radical mechanisms proceeded simultaneously. Dose rate dependence of the cationic polymerization was 1 below 3 × 107 rad/hr, while dose rate dependence of the radical polymerization was 0.65 below 3 × 107 rad/hr. At high dose rates, molecular weight and fraction of graft polymer decreased, and fraction of cationic polymerization increased. A very high-molecular-weight graft polymer was formed above 4.4 × 105 rad/hr at the initial stage of the polymerization. The dose rate dependence of this polymerization was larger than 1 and decreased with increase in dose rate. The polymerization seems to be related to an excitation of monomer or growing chain.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 17 (1979), S. 405-414 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The effect of amount of monomer on radiation-induced polymerization of styrene adsorbed on silica gel was investigated with the monomer amounting from less than monolayer adsorption to more than the equilibrium adsorption. The rate of graft polymerization and the molecular weight of the polymer changed with the amount of monomer adsorbed on silica gel. Maximum grafting efficiency was obtained at monolayer adsorption. The molecular weight of graft polymer was higher than that of homopolymer in both radical and cationic polymerizations, and the ratio in molecular weight of graft polymer to that of homopolymer tends to be unity with increasing amount of adsorbed monomer. These results can mainly be explained in terms of the number of initiating species (radical and cation) that change in relation to the amount of adsorbed monomer. Propagation and termination change with amount of adsorbed monomer in relation to the molecular mobility of adsorbed monomer. A very high-molecular-weight graft polymer is formed only with a small amount of adsorbed monomer in the initial stage. The grafting percent with a large amount of adsorbed monomer increased after most of the monomer has been polymerized. Secondary effect of radiation on the graft and homopolymers due to energy transfer from silica gel is suggested from the complicated phenomena in the later stage of the reaction.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 27 (1982), S. 1259-1268 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The effect of the specific surface area of silica gels on the radiation-induced polymerization of styrene adsorbed on silica gel was studied by ESR. The same radicals were generated on the silica gels regardless of the specific surface area, but the stability of the radicals at room temperature depended on the specific surface area. This means that the decay of the radicals proceeded mainly on the surface of the silica gel. Almost all the radicals generated by irradiation were initially in the bulk of the silica gel and migrated from the interior to the surface of the gel. When styrene monomer was adsorbed on the surface of the silica gel, the silica gel radicals interacted with the monomer and initiated polymerization and then generated polymer. The rate of migration of the silica gel radical was rather fast in the case of silica gel with a large specific surface area. Thus, the polymerization behavior of styrene adsorbed on silica gel greatly depended on the specific surface area of the gel.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...