ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 10 (1998), S. 2500-2516 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The unsteady flow of an annular and axisymmetric film under gravity is examined. This moving boundary problem is solved by mapping the inner and the outer interface of the film in the radial direction onto fixed ones and by transforming the governing equations accordingly. The ratio of the film thickness to its inner radius at the exit of the die is small in relevant processes with polymer melts. This ratio, ε, is used as the small parameter in a perturbation expansion of the general Navier–Stokes equations. Forces applied on the film include gravity, surface tension, inertia, and viscous forces. Their ratios give rise to three dimensionless numbers, St, Ca, and Re. When these dimensionless numbers are up to order one, the base state is quite deformed and it is calculated numerically by simultaneously solving three nonlinear partial differential equations in time and the axial direction. Intuitively it is expected that when the dimensionless numbers are small the base state in the perturbation scheme is a uniformly falling film. This is confirmed by analysis and the two next orders in the perturbation scheme are calculated analytically. In both cases, it was found that increasing the St number (i) accelerates the downward motion of the film, (ii) deflects its inner and outer surfaces towards its axis of symmetry, and (iii) decreases its thickness around the middle of its length. The latter effect may lead to breakup of the film in two parts. It was also found that increasing the Ca number deflects these two interfaces towards its axis of symmetry and increases its thickness monotonically with time and the axial distance. Increasing the Re number from zero, but to not very large values, generally decelerates the film and decreases its deflection from the vertical. Given typical fluid properties and process conditions the St number is up to O(ε0), i.e., much larger than the other two dimensionless numbers, and affects the film shape more significantly. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 30 (1987), S. 27-35 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The moderate-amplitude axisymmetric oscillations of an inviscid liquid shell surrounding an incompressible gas bubble are calculated by a multiple-time-scale expansion for initial deformations composed of two-lobed perturbations of the shell and a displacement of the bubble from the center of mass of the liquid. Two types of small-amplitude motion are identified and lead to very different nonlinear dynamic interactions, as described by the results valid up to second order in the amplitude of the initial deformation. In the "bubble mode,'' the oscillations of the captive bubble and the liquid shell are exactly in phase and the bubble vibrates about its initial eccentric location. The bubble moves toward the center of the drop when the shell is perturbed into a "sloshing mode'' of oscillation where both interfaces move out of phase. These results explain the centering of liquid shells observed in several experiments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 14 (2002), S. 1011-1029 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The nonlinear dynamics of the concentric, two-phase flow of two immiscible fluids in a circular tube is studied when the viscosity ratio of the fluid in the annulus to that in the core of the tube, μ, is larger than or equal to unity. For these values of the viscosity ratio the perfect core-annular flow (CAF) is linearly unstable and it is necessary to keep the ratio of the thickness of the annulus to the radius of the tube small so that the solutions remain uniformly bounded. The simulations are based on a pseudospectral numerical method while special care has been taken in order to minimize as far as possible the effect of the boundary conditions imposed in the axial direction allowing for multiple waves of different lengths to develop and interact. The time integration originates with the analytical solution for the pressure driven, perfect CAF or the perfect CAF seeded with either the most unstable mode or random disturbances. Quite regular wave patterns are predicted in the first two cases, whereas multiple unstable modes grow and remain even after saturation of the instability in the last case. The resulting waves generally travel in the same direction and faster than the undisturbed interface, except for the case with μ=1 for which they are stationary with respect to it. Depending on parameter values, waves move with the same velocity or interact with each other exchanging their amplitudes or merge and split giving rise to either chaotic or organized solutions. For fluids of equal viscosities and densities (μ=ρ=1) and for a Reynolds number, Re(≡Λρ(circumflex)1R(circumflex)2W(circumflex)0/μ(circumflex)1)=0.0275 and an inverse Weber number, W(≡T(circumflex)/(ρ(circumflex)1W(circumflex)0〈sup ARRANGE="STAGGER"〉2R(circumflex)2))=145.4, both based on the properties of the inner fluid, the tube radius, R(circumflex)2, and the average flow velocity, W(circumflex)0, small amplitude waves are predicted. The increase of μ by almost two orders of magnitude does not affect their amplitudes, but increases their temporal period linearly. Varying W by more than three orders of magnitude increases their amplitudes proportionately, while their period increases with the logarithm of W. Similar to that is the effect of increasing Re. The present analysis confirms and extends results based on long wave expansions, which lead to the Kuramoto–Sivashinsky equation and modifications of it. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 13 (2001), S. 841-858 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Nonlinear dynamics of the concentric, two-phase flow of two immiscible fluids in a circular tube is studied. The viscosity of the fluid around the axis of symmetry of the tube is larger than the viscosity of the fluid that surrounds it and gravity acts against the applied pressure gradient. A pseudo-spectral numerical method is coupled with an implicit second order time-integration scheme to solve the complete mass and momentum conservation equations as an initial value problem. The simulations originate with the analytical solution for the pressure driven, steady, core-annular flow (CAF) in a tube. In order to replicate as closely as possible the experimental conditions reported by Bai, Chen and Joseph (1992), the volume fraction of each fluid in the tube and the total flow rate of both fluids are imposed. Furthermore, the length of the tube is taken to be as long as computationally possible in order to allow for multiple waves of different lengths to develop and interact as reported in the experiments and in earlier weakly nonlinear analyses. Having performed simulations of CAF for conditions under which the reported flow charts indicate that both phases retain their integrity but the original steady flow is unstable, it was found that indeed traveling waves develop with slightly sharper crests (pointing towards the annular fluid) than troughs, the so-called "bamboo waves." Despite the uneven interface, the flow in the core fluid closely resembles Poiseuille flow, but in the annular fluid small recirculation zones develop at the level of each crest. As the Reynolds number or the flow rate of the core fluid increase, the average wavelength and the amplitude of these waves decrease, whereas the holdup ratio of the core to the annular fluid approaches two. Their specific values for each examined case are in closer agreement with the experiments than in earlier theoretical reports. For large values of interfacial tension, waves with even different wavelength move with the same velocity, whereas for small values, they attain variable velocities and approach or repel each other but no wave merging or splitting is observed. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 6 (1994), S. 1144-1157 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The transient flow of an Oldroyd-B fluid over an infinite disk set in rotation impulsively is studied under the similarity assumption. The unsteady velocity and stress field is calculated exactly for short times by a power series expansion in time. The order of magnitude of the velocity and stress components is found to depend on the relative magnitude of the Deborah number (De) and the ratio of solvent to polymeric viscosities (μr). When either one becomes very small, a solution using singular perturbations and Laplace transforms is developed. It is found that the diffusive mechanism for momentum transfer, which exists for about μr(approximately-greater-than)0.1 (depending on De) dramatically changes and turns into a propagating wave for μr〈0.1. Numerical calculations are used to determine the extent of validity of the present results.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY : American Institute of Physics (AIP)
    Physics of Fluids 3 (1991), S. 2866-2874 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Small-amplitude oscillations of capillary bridges are examined in the limit of large modified Reynolds number. The contact line between the free surface of the bridge and the upper and lower supporting walls is allowed to undergo a restrained motion by taking its velocity to be proportional to the slope of the free surface there. It is found that the oscillation frequency and damping rate depend on the aspect ratio of the bridge, the mode being excited, the motion of the contact line, and the modified Reynolds number. Very good agreement with other studies is obtained for Re〉100.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Rheologica acta 35 (1996), S. 597-615 
    ISSN: 1435-1528
    Keywords: Spin coating ; viscoplastic fluids ; Bingham fluids ; free surface flows
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Abstract The spin coating of a viscoplastic material is studied using a continuous viscosity function. Thus, the transient model requires the calculation of only velocity, pressure and the moving-free surface of the liquid film, but not the calculation of the yield surface within the liquid. A Finite Element/Newton-Raphson method is presented for solving this moving boundary problem after mapping the deforming domain onto a fixed one. Assuming axial symmetry, the effect of the Bingham, Reynolds, Capillary and gravitational Bond numbers is examined. The magnitude of the first two parameters affects significantly the flow field and the shape of the film as well as the required spinning time in order to produce a film of uniform thickness. Depending on their values, large departures from the corresponding Newtonian solution may be obtained. In these cases the film does not thin out uniformly, but a maximum in its profile is created at the center of the disk. Then, the magnitude of the Capillary number also affects the size of this maximum. The gravitational Bond number affects the film thickness and its profile to a lesser extent.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Rheologica acta 39 (2000), S. 44-61 
    ISSN: 1435-1528
    Keywords: Key words Annular viscoelastic films ; Non-isothermal extrusion ; Moving boundary problems
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Abstract The unsteady extrusion of a viscoelastic film from an annular and axisymmetric die is examined. External, elastic, viscous and inertia forces deform the film, which is simultaneously cooled via forced convection to the ambient air. This moving boundary problem is solved by mapping the liquid/air interfaces onto fixed ones and by employing a regular perturbation expansion for all the dependent variables. The ratio of the film thickness to its inner radius at the exit of the die is used as the small parameter in the perturbation expansion. The fluid mechanical aspects of the process depend on the Stokes, Deborah, Reynolds, and Capillary numbers. The heat transfer in the film and to the environment gives rise to four additional dimensionless groups: the Peclet, Biot and Brinkman numbers and the activation energy, which determines the temperature dependence of fluid viscosity and elasticity. A variable heat transfer coefficient is also considered. For typical fluid properties and process conditions, the Peclet number is very large. In this case it is the ratio of the Biot to the Peclet number, the Stanton number, which arises in the energy conservation equation. It is shown that film cooling becomes important when the Stanton number and/or the activation energy are in the high-end of their typical values. In such cases, the cooling of the parison leads to a more uniform flow and shape for the film. The influence on the process of a variable heat transfer coefficient and the Brinkman number is small.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 36 (1990), S. 1837-1850 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Nonisothermal inflation of a viscous annular parison and its cooling and solidification before and upon wall contact are analyzed by solving the unsteady momentum and energy conservation equations. The algorithm simultaneously determines the flow field and temperature distribution within the parison together with the moving surfaces at every time step. Results of the present study indicate that the inflation rate is increased as a result of higher temperature within the parison. However, the instantaneous shape of the parison and the final thickness variation upon mold contact remain virtually unchanged. Due to the temperature dependence of physical properties, the critical factor during inflation is initial temperature distribution within the parison. Inflation resulting in full attachment to a confining mold wall takes only a small fraction of the time required to cool the material to the ambient gas temperature. The transient calculations illustrate how computer simulations may be used to improve design of blow molding operations, and they are in good agreement with available experiments.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-05-20
    Description: We report experimental microfluidic measurements and theoretical modeling of elastoviscoplastic materials under steady, planar elongation. Employing a theory that allows the solid state to deform, we predict the yielding and flow dynamics of such complex materials in pure extensional flows. We find a significant deviation of the ratio of the elongational to the shear yield stress from the standard value predicted by ideal viscoplastic theory, which is attributed to the normal stresses that develop in the solid state prior to yielding. Our results show that the yield strain of the material governs the transition dynamics from the solid state to the liquid state. Finally, given the difficulties of quantifying the stress field in such materials under elongational flow conditions, we identify a simple scaling law that enables the determination of the elongational yield stress from experimentally measured velocity fields.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...