ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2011-08-12
    Description: Spatial information on inundation dynamics is expected to improve greenhouse gas estimates in climate models. Satellite data can provide land cover information from local to global scale. The detection capability for dynamics is however limited. Cloud cover and daylight independent methods are required for frequent updates. Suitable are therefore sensors which make use of microwaves. The purpose of the present study is to assess such data for determination of wetland dynamics from the viewpoint of use in climate models of the boreal and tundra environments. The focus is on synthetic aperture radar (SAR) operating in C-band due to, among microwave systems, comparably good spatial resolution and data availability. Continuity is also expected for such systems. Simple classification algorithms can be applied to detect open water in an automatised way allowing the processing of time series. Such approaches are robust when the water surface is smooth. C-band data from ENVISAT ASAR (Advanced SAR) operating in wide swath mode (150 m resolution) have been investigated for implementation of an automated detection procedure of open water fraction. More than 4000 samples (single acquisitions tiled into 0.5 degree grid cells) have been analysed for July/August 2007 and 2008. Modification of input parameters results in differences below 1 % open water fraction. The actual challenge is the frequent occurrence of waves due to wind and precipitation. This reduces the separability of the water class from other land cover. The possible update intervals for surface water extent are therefore decreased considerably. Statistical measures of the backscatter distribution can be applied in order to retrieve the for classification suitable data. The Pearson correlation between each sample dataset and a location specific representation of the bimodal distribution has been used for assessment. On average only 40 % of acquisitions allow a separation of the open water class. Satellite data are available every 2–3 days over the Western Siberian study region. With respect to the irregular acquisition intervals and varying length of unsuitable weather periods a minimum update interval of 10 days is suggested for the Northern Eurasian test case. Although SAR data availability is currently constraint future satellite missions which aim for operational services such as Sentinel-1 with its C-band SAR instrument may provide the basis for inundation monitoring in support of climate modelling.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-02-08
    Description: Wetlands are generally accepted as being the largest but least well quantified single source of methane (CH4). The extent of wetland or inundation is a key factor controlling methane emissions, both in nature and in the parameterisations used in large-scale land surface and climate models. Satellite-derived datasets of wetland extent are available on the global scale, but the resolution is rather coarse (〉25 km). The purpose of the present study is to assess the capability of active microwave sensors to derive inundation dynamics for use in land surface and climate models of the boreal and tundra environments. The focus is on synthetic aperture radar (SAR) operating in C-band since, among microwave systems, it has comparably high spatial resolution and data availability, and long-term continuity is expected. C-band data from ENVISAT ASAR (Advanced SAR) operating in wide swath mode (150 m resolution) were investigated and an automated detection procedure for deriving open water fraction has been developed. More than 4000 samples (single acquisitions tiled onto 0.5° grid cells) have been analysed for July and August in 2007 and 2008 for a study region in Western Siberia. Simple classification algorithms were applied and found to be robust when the water surface was smooth. Modification of input parameters results in differences below 1 % open water fraction. The major issue to address was the frequent occurrence of waves due to wind and precipitation, which reduces the separability of the water class from other land cover classes. Statistical measures of the backscatter distribution were applied in order to retrieve suitable classification data. The Pearson correlation between each sample dataset and a location specific representation of the bimodal distribution was used. On average only 40 % of acquisitions allow a separation of the open water class. Although satellite data are available every 2–3 days over the Western Siberian study region, the irregular acquisition intervals and periods of unsuitable weather suggest that an update interval of 10 days is more realistic for this domain. SAR data availability is currently limited. Future satellite missions, however, which aim for operational services (such as Sentinel-1 with its C-band SAR instrument), may provide the basis for inundation monitoring for land surface and climate modelling applications.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-11-21
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-08-31
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-05-03
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-17
    Description: Time series of a wide range of biogeophysical parameters from satellite data are available to date on a global scale. A few initiatives focus on their improvement and validation in high latitudes. For example the DUE Permafrost and STSE ALANIS-Methane, which are activities funded by the European Space Agency, focus on this issue. ALANIS Methane is a research project to produce and use a suite of relevant earth observation (EO) derived information to validate and improve one of the next generation land-surface models and thus reduce current uncertainties in wetland-related CH4 emissions. The task of the ESA DUE Permafrost project is to build up an Earth observation service for high-latitudinal permafrost applications. Results which are shown in this paper contribute to both. Microwave sensors are of special interest in this context due to their independence on cloud conditions and illumination of the Earth Surface. They can be used for derivation of land surface temperature, snow properties and land surface hydrology. The latter includes near surface soil moisture and inundation. Such parameters are of importance for studies on e.g. permafrost and land-atmosphere exchange. Datasets derived from active microwave instruments operating in C-band have been analysed with respect to their usability at high latitudes. Several examples from western Siberia are discussed.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...