ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0304-3991
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Electrical Engineering, Measurement and Control Technology , Natural Sciences in General , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-12-31
    Description: We investigated the recent evolution of the Po Plain–Alps system by integrating subsurface geophysical data from the Po Plain with new stratigraphic and structural observations from the Southern Alps margin. Inversion of structural data and chronology provided by stratigraphic constraints led to the definition of three tectonic events since the Pliocene, namely, the intra-Zanclean, the Gelasian, and the Middle Pleistocene, driven by an axis of maximum compression formerly oriented NE (intra-Zanclean) and then to the NNW (Gelasian and Middle Pleistocene). The associated deformation has been accommodated by two sets of faults consisting of NNE-trending thrust faults, mostly represented in the western sector of Lake Garda, and NW-trending strike-slip faults, observed in the southern and eastern sectors. The interplay between these two sets of faults is interpreted to produce short (〈10 km length) thrust ramps activated in left transpression, bounded by longer (30–60 km) transfer faults activated in a right-lateral strike-slip motion. Based on this structural model, we infer moderate seismicity (M w 〈 6) associated with the NNE-directed thrusts and stronger earthquakes (also M w 〉 6.5) along the NW-trending strike-slip faults. In this framework, the newly defined Nogara fault and the Sant’Ambrogio fault, all pertaining to the NW-trending system, are regarded as potential candidates for the seismogenic source of the January A.D. 1117 event, the most destructive earthquake in the Po Plain.
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1983-01-01
    Print ISSN: 0304-3991
    Electronic ISSN: 1879-2723
    Topics: Electrical Engineering, Measurement and Control Technology , Natural Sciences in General , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
  • 5
  • 6
    Publication Date: 2020-11-13
    Description: Detailed investigations carried out in support of the new Italian geological map at the scale 1:50 000 (CARG Project) resulted in the definition of new formal lithostratigraphic units (Brenno Fm, Tabiago Fm, Cibrone Fm) within the previously undifferentiated Scaglia and in the first integrated studies on calcareous plankton, including calcareous nannofossils. The Tabiago Formation consists of marls and pelagic limestones with some intercalations of turbidites containing large shallow-water displaced foraminifera in the upper part. Its age ranges from the Early Paleocene (foraminiferal Zone P1b, nannofossil Zone NP2) to the Middle Eocene (foraminiferal Zone P12, nannofossil Zone NP15). The lowermost biozones of the Paleocene (P0, Pα=P. eugubina, and P1a) are missing. The Cibrone Formation is represented by scattered outcrops and consists of marls and silty marls with minor arenites. Its age is Middle Eocene (Zone P12, Zone NP15-NP16). The Paleocene portion of the well-exposed Tabiago section is characterized by alternating couplets of soft marls and hard limestones. A multidisciplinary investigation was undertaken in order to understand the environmental significance of these repetitive cycles. Abundance and composition of the planktonic foraminiferal populations, degree of bioturbation, and calcium carbonate content were measured. In the marly semicouplet the fauna is relatively poor; it is enriched in specimens of the genus Subbotina, an indicator of nutrient-rich, colder waters. In the calcareous semicouplet the fauna is enriched in taxa of the genus Morozovella, an indicator of warm, nutrient-poor tropical waters. A possible interpretation of the sedimentary rhythms is that the marly interbeds were deposited in periods of high seasonality, when enhanced circulation brings nutrient enrichment at the surface and good ventilation at the bottom. On the contrary, the calcareous interbeds were deposited at times of low seasonality with sluggish circulation and nutrient-poor surface waters. In order to evaluate the possible extra-terrestrial forcing of the observed cyclicity, a spectral analysis was carried out on hundreds of quantitative data concerning foraminiferal composition and carbonate content. The Milankovitch frequency for precession (21 ky), obliquity (41 ky) and short excentricity (100 ky) cycles were recorded with the strongest signal related to obliquity.
    Description: Published
    Description: 3.2. Tettonica attiva
    Description: N/A or not JCR
    Description: reserved
    Keywords: Biochronology ; Calcareous Plankton ; Paleocene ; Eocene ; Cyclostratigraphy ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: The Monte Orfano Conglomerate (MOC), exposed in the foothills of the Southern Alps (northern Italy), is one of the few outcrops of sediments documenting the Cenozoic tectonic evolution of the Alpine retrowedge. Calcareous nannofossil biostratigraphy allowed us to constrain the upper part of the MOC, formerly attributed to the Early-Middle Miocene in the type-locality, to the earliest Miocene (Neogene part of the NN1 nannofossil zone). A likely latest Oligocene age is therefore suggested for the bulk of the underlying conglomerates, whose base is not exposed. Deposition of the MOC can be framed into the post-collisional tectonic uplift of the Alps, documented in the Lake Como area by the Como Conglomerate (CC) at the base of the Gonfolite Lombarda Group, and supports the correlation with Upper Oligocene clastic sediments cropping out further to the East, in the Lake Garda and in the Veneto-Friuli areas (“molassa”). The remarkable difference in petrographic composition between the western (CC) and eastern (MOC) clastics deposited in the Alpine retro-foreland basin highlights the synchronous tectonic activity of two structural domains involving different crustal levels. Whilst the bulk of the CC, that straddles the Oligocene/Miocene boundary, records the tectonic exhumation of the Alpine axial chain crystalline complexes, the coeval MOC consists of detritus deriving from the Alpine retrowedge superficial crustal section (Triassic to Paleogene sedimentary rocks), and constrains the onset of the post-collisional deformation phase of the Southern Alps as not younger than the latest Oligocene.
    Description: Submitted
    Description: 42
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: Southern Alps ; Cenozoic ; Calcareous nannofossil biostratigraphy ; clastic provenance ; shelf fan-delta ; retro-foreland basin ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: manuscript
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: Calcareous nannofossil biostratigraphic investigations have been carried out on samples collected from the Tabiago section, Brianza, northern Italy. This section records early Maastrichtian (CC23b nannofossil zone) to early Eocene (NP10 nannofossil zone) calcareous nannofossil assemblages. The Cretaceous-Tertiary transition is characterized by major changes in sedimentation rates and two likely stratigraphic gaps. The Cretaceous Brenno Formation was deposited with a high sedimentation rate (~20 m/m.y.), whilst the Tabiago Formation of Paleogene age records a drastic decrease (~10 m/m.y.). The absence of the CC26 zonal marker Micula prinsii may indicate a stratigraphic hiatus or an extremely condensed level in the latest Maastrichtian. However, only two samples have been collected and analyzed in this interval due to low exposure of the outcrop, and the absence of M. prinsii could be the result of diagenetic overprint or insufficient sampling. A stratigraphic hiatus or a very condensed interval corresponds to the upper part of NP1 nannofossil zone and Pα foraminiferal Zone and P1a Subzone in the early Paleocene. The poor exposure of the outcrop prevents to precisely locate the zonal boundaries between NP4 and NP5 and between NP9 and NP10 and impedes the documentation of possible further stratigraphic gaps or condensed intervals.
    Description: Published
    Description: 29-39
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: calcareous nannofossils ; biostratigraphy ; Maastrichtian ; Paleocene ; Eocene ; Northern Italy ; Lombardy ; Cretaceous/Tertiary boundary ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-02-24
    Description: Calcareous nannofossil and foraminiferal analyses have been carried out on outcrops from the type-area of the Gonfolite Lombarda Group (Como, northern Italy). In these marine fine- to coarse-grained clastics, rapidly accumulating at the southern front of the uprising Alpine range during the Oligo-Miocene, a scarce, but reliable, sequence of calcareous nannofossil events has been observed, allowing to refine the previous age assignments. Planktonic foraminifera were found to be extremely rare and provided limited biostratigraphic information. The Villa Olmo Conglomerate and the Chiasso Formation contain the Last Occurrence (LO) of Sphenolithus distentus and the First Occurrence (FO) of Triquetrorhabdulus carinatus, which are characteristic of the nannofossil zones NP24 and NP25 (Chattian), respectively. The lower part of the Como Conglomerate was deposited during the zone NP25, whilst the upper part of the Como Conglomerate straddles the Chattian/Aquitanian boundary in zone NN1. The deposition of the Prestino Mudstones also occurred during zone NN1. However, the upper part of this formation has been dated as Burdigalian during nannofossil zone NN2. The deposition of the upper part of the Val Grande Sandstone has been assigned to the NN3 zone owing to the presence of the taxon Sphenolithus belemnos, which is restricted to NN3. The upper part of the investigated section is characterized by the deposition of the Lucino Conglomerate and its fine-grained members (Lucinasco and Lurate Caccivio Mudstones). The Lucinasco Mudstones have been dated as late Burdigalian corresponding to zone NN4, whilst the overlying Lurate Caccivio Mudstones were deposited during the Langhian part of the zone NN5, based on the presence of S. heteromorphus and the absence of H. ampliaperta. On the whole, the base and the top of the outcropping Gonfolite Lombarda Group result from our study to be younger than hitherto proposed, allowing to resolve certain previous conflicts with the few radiometric dates available for clasts from the Gonfolite Lombarda Group. The depth of deposition was upper bathyal during the Chattian and the Aquitanian and shallowed to neritic during the deposition of the Langhian Lurate Caccivio Mudstones.
    Description: In press
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: open
    Keywords: Gonfolite Lombarda Group ; biostratigraphy ; calcareous nannofossils ; foraminifers ; Southern Alps ; Cenozoic ; Italy ; 04. Solid Earth::04.04. Geology::04.04.02. Geochronology ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: Calcareous nannofossil and foraminiferal analyses have been carried out on outcrops from the type-area of the Gonfolite Lombarda Group (Como, northern Italy). In these marine fine- to coarse-grained clastics, rapidly accumulating at the southern front of the uprising Alpine range during the Oligo-Miocene, a scarce, but reliable, sequence of calcareous nannofossil events has been observed, allowing to refine the previous age assignments. Planktonic foraminifera were found to be extremely rare and provided limited biostratigraphic information. The Villa Olmo Conglomerate and the Chiasso Formation contain the Last Occurrence (LO) of Sphenolithus distentus and the First Occurrence (FO) of Triquetrorhabdulus carinatus, which are characteristic of the nannofossil zones NP24 and NP25 (Chattian), respectively. The lower part of the Como Conglomerate was deposited during the zone NP25, whilst the upper part of the Como Conglomerate straddles the Chattian/Aquitanian boundary in zone NN1. The deposition of the Prestino Mudstones also occurred during zone NN1. However, the upper part of this formation has been dated as Burdigalian during nannofossil zone NN2. The deposition of the upper part of the Val Grande Sandstone has been assigned to the NN3 zone owing to the presence of the taxon Sphenolithus belemnos, which is restricted to NN3. The upper part of the investigated section is characterized by the deposition of the Lucino Conglomerate and its fine-grained members (Lucinasco and Lurate Caccivio Mudstones). The Lucinasco Mudstones have been dated as late Burdigalian corresponding to zone NN4, whilst the overlying Lurate Caccivio Mudstones were deposited during the Langhian part of the zone NN5, based on the presence of S. heteromorphus and the absence of H. ampliaperta. On the whole, the base and the top of the outcropping Gonfolite Lombarda Group result from our study to be younger than hitherto proposed, allowing to resolve certain previous conflicts with the few radiometric dates available for clasts from the Gonfolite Lombarda Group. The depth of deposition was upper bathyal during the Chattian and the Aquitanian and shallowed to neritic during the deposition of the Langhian Lurate Caccivio Mudstones.
    Description: Published
    Description: 35-49
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Gonfolite Lombarda Group ; biostratigraphy ; calcareous nannofossils ; foraminifers ; Southern Alps ; Cenozoic ; Italy ; 04. Solid Earth::04.04. Geology::04.04.02. Geochronology ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...