ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-08-31
    Description: The quality of Little Akaki River in Addis Ababa (Ethiopia) is deteriorating significantly due to uncontrolled waste released from point and diffuse sources. In this study, pollution load from these sources was quantified by integrating chemical mass balance analysis (CMB) and the watershed model of pollution load (PLOAD) for chemical oxygen demand, biochemical oxygen demand, total dissolved solid, total nitrogen, nitrate, and phosphate. Water samples monitored bimonthly at 15 main channel monitoring stations and 11-point sources were used for estimation of pollutant load using FLUX32 software in which the flow from the soil and water assessment tool (SWAT) model calibration, measured instantaneous flow, and constituent concentration were used as input. The SWAT simulated the flow quite well with a coefficient of determination (R2) of 0.78 and 0.82 and Nash-Sutcliff (NSE) of 0.76 and 0.80 during calibration and validation, respectively. The uncharacterized nonpoint source load calculated by integrating CMB and PLOAD showed that the contribution of nonpoint source prevails at the middle and downstream segments of the river. Maximum chemical oxygen demand (COD) load from uncharacterized nonpoint sources was calculated at the monitoring station located below the confluence of two rivers (near German Square). On the other hand, high organic pollution load, biochemical oxygen demand (BOD) load, was calculated at a station upstream of Aba Samuel Lake, whereas annual maximum total dissolved solid (TDS), total nitrogen (TN), and phosphate load (PO4-P) from the nonpoint source in Little Akaki River (LAR) were found at a river section near Kality Bridge and maximum NOX load was calculated at station near German Square. The integration of the CMB and PLOAD model in this study revealed that the use of area-specific pollutant export coefficients would give relatively accurate results than the use of mean and median ECf values of each land use.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-04-27
    Description: The study investigates the decay of heterotrophic biomass in biofilms under starvation conditions based on measurements of the oxygen uptake rate (OUR). Original incentive was to understand the preservation of active biomass in SBR-trickling filter systems (SBR-TFS), treating event-based occurring, organically polluted stormwater. In comparison with activated sludge systems, the analyzed biofilm carrier of SBR trickling filters showed an astonishing low decay rate of 0.025 d−1, that allows the biocenosis to withstand long periods of starvation. In activated sludge modeling, biomass decay is regarded as first order kinetics with a 10 times higher constant decay rate (0.17–0.24 d−1, depending on the model used). In lab-scale OUR measurements, the degradation of biofilm layers led to wavy sequence of biomass activity. After long starvation, the initial decay rate (comparable to activated sludge model (ASM) approaches) dropped by a factor of 10. This much lower decay rate is supported by experiments comparing the maximum OUR in pilot-scale biofilm systems before and after longer starvation periods. These findings require rethinking of the approach of single-stage decay rate approach usually used in conventional activated sludge modelling, at least for the investigated conditions: the actual decay rate is apparently much lower than assumed, but is overshadowed by degradation of either cell-internal substrate and/or the ability to tap “ultra-slow” degradable chemical oxygen demand (COD) fractions. For the intended stormwater treatment, this allows the application of technical biofilm systems, even for long term dynamics of wastewater generation.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-05-01
    Print ISSN: 0043-1354
    Electronic ISSN: 1879-2448
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-12-13
    Print ISSN: 0944-1344
    Electronic ISSN: 1614-7499
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-06-12
    Description: Achievements of good chemical and ecological status of groundwater (GW) and surface water (SW) bodies are currently challenged mainly due to poor identification and quantification of pollution sources. A high spatio-temporal hydrological and water quality monitoring of SW and GW bodies is the basis for a reliable assessment of water quality in a catchment. However, high spatio-temporal hydrological and water quality monitoring is expensive, laborious, and hard to accomplish. This study uses spatio-temporally low resolved monitored water quality and river discharge data in combination with integrated hydrological modelling to estimate the governing pollution pathways and identify potential transformation processes. A key task at the regarded lowland river Augraben is (i) to understand the SW and GW interactions by estimating representative GW zones (GWZ) based on simulated GW flow directions and GW quality monitoring stations, (ii) to quantify GW flows to the Augraben River and its tributaries, and (iii) to simulate SW discharges at ungauged locations. Based on simulated GW flows and SW discharges, NO3-N, NO2-N, NH4-N, and P loads are calculated from each defined SW tributary outlet (SWTO) and respective GWZ by using low-frequency monitored SW and GW quality data. The magnitudes of NO3-N transformations and plant uptake rates are accessed by estimating a NO3-N balance at the catchment outlet. Based on sensitivity analysis results, Manning’s roughness, saturated hydraulic conductivity, and boundary conditions are mainly used for calibration. The water balance results show that 60–65% of total precipitation is lost via evapotranspiration (ET). A total of 85–95% of SW discharge in Augraben River and its tributaries is fed by GW via base flow. SW NO3-N loads are mainly dependent on GW flows and GW quality. Estimated SW NO3-N loads at SWTO_Ivenack and SWTO_Lindenberg show that these tributaries are heavily polluted and contribute mainly to the total SW NO3-N loads at Augraben River catchment outlet (SWO_Gehmkow). SWTO_Hasseldorf contributes least to the total SW NO3-N loads. SW quality of Augraben River catchment lies, on average, in the category of heavily polluted river with a maximum NO3-N load of 650 kg/d in 2017. Estimated GW loads in GWZ_Ivenack have contributed approximately 96% of the total GW loads and require maximum water quality improvement efforts to reduce high NO3-N levels. By focusing on the impacts of NO3-N reduction measures and best agricultural practices, further studies can enhance the better agricultural and water quality management in the study area.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-14
    Description: Lowland river basins are characterised by complex hydrologic and hydraulic interactions between the different subsystems (aerated zone, groundwater, surface water), which may require physically-based dynamically-coupled surface water and groundwater hydrological models to reliably describe these processes. Exemplarily, for a typical north-eastern Germany lowland catchment (Tollense river with about 400 km²), an integrated hydrological model, MIKE SHE, coupled with a hydrodynamic model, MIKE 11, was developed and assessed. Hydrological and hydraulic processes were simulated from 2010 to 2018, covering strongly varying meteorological conditions. To achieve a highly reliable model, the calibration was performed in parallel for groundwater levels and river flows at the available monitoring sites in the defined catchment. Based on sensitivity analysis, saturated hydraulic conductivity, leakage coefficients, Manning’s roughness, and boundary conditions (BCs) were used as main calibration parameters. Despite the extreme soil heterogeneity of the glacial terrain, the model performance was quite reasonable in the different sub-catchments with an error of less than 2% for water balance estimation. The resulted water balance showed a strong dependency on land use intensity and meteorological conditions. During relatively dry hydrological years, actual evapotranspiration (ETa) becomes the main water loss component, with an average of 60%–65% of total precipitation and decreases to 55%–60% during comparatively wet hydrological years during the simulation period. Base flow via subsurface and drainage flow accounts for an approximate average of 30%–35% during wet years and rises up to 35%–45% of the total water budget during the dry hydrological years. This means, groundwater is in lowland river systems the decisive compensator of varying meteorological conditions. The coupled hydrologic and hydraulic model is valuable for detailed water balance estimation and seasonal dynamics of groundwater levels and surface water discharges, and, due to its physical foundation, can be extrapolated to analyse meteorological and land use scenarios. Future work will focus on coupling with nutrient transport and river water quality models.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-01-18
    Description: Urban drainage modelling is a state-of-the-art tool to understand urban water cycles. Nevertheless, there are gaps in knowledge of urban water modelling. In particular pressure drainage systems are hardly considered in the scientific investigation of urban drainage systems, although they represent an important link in its network structure. This work is the conclusion of a series of investigations that have dealt intensively with pressure drainage systems. In particular, this involves the transport of sediments in pressure pipes. In a real-world case study, sediment transport inside a pressure pipe in an urban region in northern Germany was monitored by online total suspended solids measurements. This in situ data is used in this study for the development and calibration of a sediment transport model. The model is applied to investigate sediments transport under low flow velocities (due to energy saving intentions). The resulting simulation over 30 days pumping operation shows that a transport of sediments even at very low flow velocities of 0.27 m/s and under various inflow conditions (dry weather and storm water inflow) is feasible. Hence, with the help of the presented sediment transport model, energy-efficient pump controls can be developed without increasing the risk of deposition formation.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-10-13
    Description: Continuous measurement systems are widely spread in sewers, especially in non-pressure systems. Due to its relatively low costs, turbidity sensors are often used as a surrogate for other indicators (solids, heavy metals, organic compounds). However, little effort is spent to turbidity sensors in pressurized systems so far. This work presents the results of one year in-situ turbidity/total suspended solids (TSS) monitoring inside a pressure pipe (600 mm diameter) in an urban region in northern Germany. The high-resolution sensor data (5 s interval) are used for the determination of solids sedimentation (within pump pauses) and erosion behavior (within pump sequences). In-situ results from sensor measurements are similar to laboratory results presented in previous studies. TSS is decreasing exponentially in pump pauses under dry weather inflow with an average of 0.23 mg/(L s). During pump sequences, solids eroded completely at a bed shear stress of 0.5 N/m². Sedimentation and erosion behavior changes with the inflow rate. Solids settle faster with increasing inflow: at storm water inflow with an average of 0.9 mg/(L s) and at diurnal inflow variation up to 0.6 mg/(L s) at 12:00 a.m. The results are used as calibration data for a sediment transport simulation in Part II.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-12-26
    Description: Flow control in wastewater pressure pipes can reduce energy consumption but increases the risk of sediment formation due to reduced flow velocity. In this work, the sedimentation behavior of dry and wet weather samples at the inflow of a wastewater pumping station is determined by settling column experiments. Based on the derived characteristic settling velocity (vs) distribution, the impact of energy-efficient flow control on sediment formation in pressure pipes (600 mm diameter) was quantified in comparison to a simple on/off operation. In parallel, the sediment formation for 2 years of pumping operation was monitored indirectly via the friction losses. For the investigated case, settling is strongly influenced by the inflow condition (dry, combined from road runoff). Under combined inflow, the proportion of solids with vs from 0.007 to 1.43 mm/s significantly increases. In energy-efficient mode with smoother operation and shorter switch-off sequences, the sediment formation is significant lower. The mean deposit’s height in energy-efficient control was calculated to 0.137 m, while in on/off operation the mean deposit’s height was 0.174 m. No disadvantages arise over a long period by installing the energy-efficient control. The decreased flow lead under the investigated conditions even to a reduced sediment formation.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-11-20
    Description: This special issue of Ambio compiles a series of contributions made at the 8th International Phosphorus Workshop (IPW8), held in September 2016 in Rostock, Germany. The introducing overview article summarizes major published scientific findings in the time period from IPW7 (2015) until recently, including presentations from IPW8. The P issue was subdivided into four themes along the logical sequence of P utilization in production, environmental, and societal systems: (1) Sufficiency and efficiency of P utilization, especially in animal husbandry and crop production; (2) P recycling: technologies and product applications; (3) P fluxes and cycling in the environment; and (4) P governance. The latter two themes had separate sessions for the first time in the International Phosphorus Workshops series; thus, this overview presents a scene-setting rather than an overview of the latest research for these themes. In summary, this paper details new findings in agricultural and environmental P research, which indicate reduced P inputs, improved management options, and provide translations into governance options for a more sustainable P use.
    Print ISSN: 0044-7447
    Electronic ISSN: 1654-7209
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Springer on behalf of Royal Swedish Academy of Sciences.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...