ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-072X
    Keywords: Key words Catechol 1 ; 2-dioxygenase ; Alcaligenes ; eutrophus CH34 ; Substituted catechol degradation ; Excess substrate inhibition ; Phenol interactions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Alcaligenes eutrophus CH34 used benzoate as a sole source of carbon and energy, degrading it through the 3-oxoadipate pathway. All the enzymes required for this degradation were shown to be encoded by chromosomal genes. Catechol 1,2-dioxygenase activity was induced by benzoate, catechol, 4-chlorocatechol, and muconate. The enzyme is most likely a homodimer, with an apparent molecular weight of 76,000 ± 500. According to several criteria, its properties are intermediate between those of catechol 1,2-dioxygenases (CatA) and chlorocatechol 1,2-dioxygenases (ClcA). The determined K m for catechol is the lowest among known catechol and chlorocatechol dioxygenases. Similar K m values were found for para-substituted catechols, although the catalytic constants were much lower. The catechol 1,2-dioxygenase from strain CH34 is unique in its property to transform tetrachlorocatechol; however, excess substrate led to a marked reversible inhibition. Some meta- and multi-substituted catechols behaved similarly. The determined K m (or K i) values for para- or meta-substituted catechols suggest that the presence of an electron-withdrawing substituent at one of these positions results in a higher affinity of the enzyme for the ligand. Results of studies of recognition by the enzyme of various nonmetabolised aromatic compounds are also discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 28 (1985), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract Adsorption of bacteriophage Mu with its invertible DNA segment in the G(−) orientation requires a terminal glucose residue for binding to the core lipopolysaccharide (LPS) of Gram-negative bacteria. Analysis of a Mu-resistant mutant shows that the receptor for Mu G(−) in Erwinia B374 is a Glc-β1,6-Glc disaccharide. A spontaneously occurring host-range mutant, Mu G(−)h101, grows on Escherichia coli C. The loss of the terminal β1,3-linked glucose from the LPS of E. coli C leads to resistance to the phage Mu. These mutants are also resistant to phage P1 and D108 which have largely homologous G segments. This shows that Mu G(+) and G(−) phage particles differ with respect to their cell-wall receptors in the type of glycosidic linkage of a terminal glucose residue: α1, 2 for G(+) and β1,6 for G(−).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Molecular microbiology 11 (1994), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: We have shown previously that some particular mutations in bacteriophage Mu repressor, the frameshift vir mutations, made the protein very sensitive to the Escherichia coli ATP-dependent Clp protease. This enzyme is formed by the association between a protease subunit (ClpP) and an ATPase subunit. ClpA, the best characterized of these ATPases, is not required for the degradation of the mutant Mu repressors. Recently, a new potential ClpP associated ATPase, ClpX, has been described. We show here that this new subunit is required for Mu vir repressor degradation. Moreover, ClpX (but not ClpP) was found to be required for normal Mu replication. Thus ClpX has activities that do not require its association with ClpP. In the pathway of Mu replicative transposition, the block resides beyond the strand transfer reaction, i.e. after the transposition reaction per se is completed, suggesting that ClpX is required for the transition to the formation of the active replication complex at one Mu end. This is a new clear-cut case of the versatile activity of polypeptides that form multi-component ATP-dependent proteases.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Molecular microbiology 15 (1995), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Bacteriophage Mu does not grow on temperature-sensitive E. coli dnaK mutants at elevated temperatures because of a defect in late transcription. As the Mu-encoded C protein is required for activation of transcription from the phage late promoters, we attempted to determine if DnaK and its accessory proteins DnaJ and GrpE are required for synthesis of C protein or at a later step. We found that the chaperones act in Mu late transcription beyond C-protein synthesis, and that C-protein stability is decreased in the mutant hosts. This suggests that the DnaK chaperone machine may be required for the proper folding and/or multi-merization of C protein.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Molecular microbiology 6 (1992), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: All of the previously described effects of integration host factor (IHF) on bacteriophage Mu development have supported the view that IHF favours transposition-replication over the alternative state of lysogenic phage growth. In this report we show that, consistent with a model in which Mu repressor binding to its operators requires a particular topology of the operator DNA, IHF stimulates repressor binding to the Ol and O2 operators and enhances Mu repression. IHF would thus be one of the keys, besides supercoiling and the H-NS protein, that lock the operator region into the appropriate topological conformation for high-affinity binding not only of the phage transposase but also of the phage repressor.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The formation of araB–lacZ coding sequence fusions in Escherichia coli is a particular type of chromosomal rearrangement induced by Mucts62, a thermoinducible mutant of mutator phage Mu. Fusion formation is controlled by the host physiology. It only occurs after aerobic carbon starvation and requires the phage-encoded transposase pA, suggesting that these growth conditions trigger induction of the Mucts62 prophage. Here, we show that thermal induction of the prophage accelerated araB–lacZ fusion formation, confirming that derepression is a rate-limiting step in the fusion process. Nonetheless, starvation conditions remained essential to complete fusions, suggesting additional levels of physiological regulation. Using a transcriptional fusion indicator system in which the Mu early lytic promoter is fused to the reporter E. coli lacZ gene, we confirmed that the Mucts62 prophage was derepressed in stationary phase (S derepression) at low temperature. S derepression did not apply to prophages that expressed the Mu wild-type repressor. It depended upon the host ClpXP and Lon ATP-dependent proteases and the RpoS stationary phase-specific σ factor, but not upon Crp. None of these four functions was required for thermal induction. Crp was required for fusion formation, but only when the Mucts62 prophage encoded the transposition/replication activating protein pB. Finally, we found that thermally induced cultures did not return to the repressed state when shifted back to low temperature and, hence, remained activated for accelerated fusion formation upon starvation. The maintenance of the derepressed state required the ClpXP and Lon host proteases and the prophage Ner-regulatory protein. These observations illustrate how the cts62 mutation in Mu repressor provides the prophage with a new way to respond to growth phase-specific regulatory signals and endows the host cell with a new potential for adaptation through the controlled use of the phage transposition machinery.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-6857
    Keywords: Clp protease ; histone-like proteins ; phage Mu ; transposition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Bacteriophage Mu is a transposon and a temperate phage which has become a paradigm for the study of the molecular mechanism of transposition. As a prophage, Mu has also been used to study some aspects of the influence of the host cell growth phase on the regulation of transposition. Through the years several host proteins have been identified which play a key role in the replication of the Mu genome by successive rounds of replicative transposition as well as in the maintenance of the repressed prophage state. In this review we have attempted to summarize all these findings with the purpose of emphasizing the benefit the virus and the host cell can gain from those phage-host interactions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 271 (1978), S. 580-582 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The molecular mechanism by which Mu causes chromosomal rearrangements is not known, although all observations made so far are consistent with the idea that the Mu enzymes and the sites on Mu DNA used for normal Mu integration are necessary and sufficient for Mu to mediate these events8. All mutants ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 106 (1969), S. 89-92 
    ISSN: 1617-4623
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Insertion of phage Mu. 1 within prophage λ results in defectiveness of the λ-lysogen. When Mu is located in the genetic segment involved in the late functions, the expression of all the genes distal to the insertion is severely depressed. The results indicate that the main promotor for transcription of the late functions is located in the Q-R segment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 129 (1974), S. 185-188 
    ISSN: 1617-4623
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Mu-1 development is blocked by addition of rifampicin in a rif 8 but not in rif r strain. This suggests that Mu does not synthesize any stable protein which can replace the host RNA polymerase. The fact that Mu development is only partially blocked by streptolydigin is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...