ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Cultivated tomato Lycopersicon esculentum (L.) Mill. cv. P-73 and its wild salt tolerant relative L. pennellii (Correll) D'Arcy accession PE-47, were grown during spring-summer 1989 under unheated plastic greenhouse conditions. Plants were submitted to two different salt treatments using 0 and 140 mM NaCI irrigation water. In both tomato species, salinity caused a proportionally larger reduction in leaf area than in leaf weight and, in L. esculentum, a proportionally larger decrease in stem weight than in leaf weight. Daily variations in leaf water potential (Ψ1) were fundamentally due to changes in the evaporative demand of the atmosphere. Reductions in Ψ1 due to salinity were consistent only in L. esculentum. In all the conditions studied, leaf turgor was maintained. Leaf conductance (g1)was higher in L. esculentum than in L. pennellii.Salinity induced a clear reduction in g1 levels in L. esculentum whereas, in L. pennellii, this reduction was noted only in May. In both species the Ψos (leaf osmotic potential at full turgor) levels were reduced by salinity. The bulk modulus of elasticity (E) and relative water content at turgor loss point (RWCtlp) were not affected by salinity. The RWCtlp values in L. pennellii seem to be controlled by E values.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0304-4238
    Keywords: citrus ; iron ; peroxidase
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Scientia Horticulturae 26 (1985), S. 273-277 
    ISSN: 0304-4238
    Keywords: citrus ; iron ; peroxidase
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Cultivated tomato Lycopersicon esculentum (L.) Mill. cv. P-73 and its wild salt-tolerant relative L. pennellii (Correll) D'Arcy accession PE-47 growing on silica sand in a growth chamber were exposed to 0, 70, 140 and 210 mM NaCl nutrient solutions 35 days after sowing. The saline treatments were imposed for 4 days, after which the plants were rinsed with distilled water. Salinity in L. esculentum reduced leaf area and leaf and shoot dry weights. The reductions were more pronounced when sodium chloride was removed from the root medium. Reduction in leaf area and weight in L. pennellii was only observed after the recovery period. In both genotypes salinity induced a progressive reduction in leaf water potential and leaf conductance. During the recovery period leaf water potential (ψ1) and leaf conductance (g1) reached levels similar to those of control plants in wild and cultivated species, respectively. Leaf osmotic potential at full turgor (ψos) decreased in the salt treated plants of both genotypes, whereas the bulk modulus of elasticity was not affected by salinity. Leaf water potential at turgor loss point (ψtlp) and relative water content at turgor loss point (RWCtlp) appeared to be controlled by leaf osmotic potential at full turgor (ψos) and by bulk modulus of elasticity, respectively. At lowest salinity, the wild species carried out the osmotic adjustment based almost exclusively on Cl− and Na+, with a marked energy savings. Under highest salinity, this species accommodate the stress through a higher expenditure of energy due to the contribution of organic solutes to the osmotic adjustment. The domesticated species carried out the osmotic adjustment based always on an important contribution of organic solutes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-8264
    Keywords: Citrus limon ; elastic adjustment ; leaf conductance ; osmotic potential ; water deficit ; water potential
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Potted two-year-old lemon plants (Citrus limon (L.) Burm. fil.) cv. Fino, growing under field conditions were subjected to drought by withholding irrigation for 13 d. After that, plants were re-irrigated and the recovery was studied for 5 d. Control plants were daily irrigated maintaining the soil matric potential at about -30 kPa. Young leaves of control plants presented higher leaf conductance (g1) and lower midday leaf water potential (Ψmd) than mature ones. Young leaves also showed higher leaf water potential at the turgor loss point (Ψtlp) than mature leaves. In both leaf types g1 decreased with increased vapour pressure deficit of the atmosphere. From day 1 of the withholding water, predawn and midday leaf water potentials (Ψpd and Ψmd) decreased, reaching in both cases minimum values of -5.5 MPa, with no significant differences between mature and young leaves. Water stress induced stomatal closure, leaf rolling and partial defoliation. No osmotic adjustment was found in response to water stress in either leaf type, but both were able to enhance the cell wall elasticity (elastic adjustment). After rewatering, leaf water potential recovered quickly (within 2 d) but g1 did not.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-8264
    Keywords: cuticular transpiration ; leaf hairs ; NaCl stress ; pressure potential ; water potential
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Young plants of Lotus creticus creticus growing in a hydroponic culture were submitted to 0, 70 and 140 mM NaCl treatments for 28 d and the growth and ecophysiological characteristics of these plants have been studied. The growth of Lotus plants was not affected by salinity when applied for a short period (about 15 d); however, 140 mM NaCl induced a decrease in shoot RGR at the end of the treatment. The root growth was not decreased, even it was stimulated by 140 mM NaCl. The osmotic adjustment of Lotus plants at 70 and 140 mM NaCl maintained constant pressure potential, avoiding the visual wilting. For a similar leaf water potential, cuticular transpiration of salinized plants was lower than in control plants due to the salinity effect on the cuticle. Moreover, the presence of hairy leaves (60 and 160 trichomes per mm2 in young and adult leaves, respectively) allows keeping almost 81 % of sprayed water and absorbing the 9 % of the water retained, decreased the epidermal conductance to water vapour diffusion.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-1319
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Fino lemon trees (Citrus limon L. Burm. fil.) on sour orange (Citrus aurantium L.), growing on a low water retention capacity soil, were submitted to three different irrigation treatments over four years: 100% ETc all year (T-0), 25% ETc all year except during the rapid fruit growth period when 100% ETc was applied (T-1) and 100% ETc all year, except during the rapid fruit growth period when 70% ETc was applied (T-2). A water saving of 30 and 20% was achieved in the T-1 and T-2 treatments, respectively. The plant responses to irrigation treatments were similar in all the years studied. Leaf water potential decreased during deficit irrigation periods in T-1 and T-2 treatments. Larger differences were found in values taken at predawn (ψ pd) than at midday (ψ md), indicating thatψ pd is a more useful indicator of plant water status. There was neither osmotic nor elastic adjustment in response to deficit irrigation treatment. A clear separation between the main periods of shoot and fruit growth was found, which can be considered an advantageous characteristic in applying regulated deficit irrigation strategies. Onset of the critical period of rapid fruit growth could be determined precisely by considering the decrease in relative fruit growth rate values. T-2 treatment did not induce a significant reduction in total yield, but it caused a delay in reaching marketable lemon fruit size. T-1 treatment did not affect total yield, with a reduction in yield on the first pick occurring in only one year. Chemical characteristics of lemon fruit were not significantly modified by irrigation treatment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-1319
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract   Fino lemon trees (Citrus limon L. Burm. fil.) on sour orange (Citrus aurantium L.), growing on a low water retention capacity soil, were submitted to three different irrigation treatments over four years: 100% ETc all year (T-0), 25% ETc all year except during the rapid fruit growth period when 100% ETc was applied (T-1) and 100% ETc all year, except during the rapid fruit growth period when 70% ETc was applied (T-2). A water saving of 30 and 20% was achieved in the T-1 and T-2 treatments, respectively. The plant responses to irrigation treatments were similar in all the years studied. Leaf water potential decreased during deficit irrigation periods in T-1 and T-2 treatments. Larger differences were found in values taken at predawn (Ψ pd) than at midday (Ψ md), indicating that Ψ pd is a more useful indicator of plant water status. There was neither osmotic nor elastic adjustment in response to deficit irrigation treatment. A clear separation between the main periods of shoot and fruit growth was found, which can be considered an advantageous characteristic in applying regulated deficit irrigation strategies. Onset of the critical period of rapid fruit growth could be determined precisely by considering the decrease in relative fruit growth rate values. T-2 treatment did not induce a significant reduction in total yield, but it caused a delay in reaching marketable lemon fruit size. T-1 treatment did not affect total yield, with a reduction in yield on the first pick occurring in only one year. Chemical characteristics of lemon fruit were not significantly modified by irrigation treatment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1573-5036
    Keywords: fruit quality ; irrigation ; leaf water potential ; lemon ; soil water potential
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Verna lemon trees were irrigated by six different treatments: five flood and one drip. Soil and plant water status, yields and fruit quality were measured. The drip-irrigated treatment gave higher yield and fruit size. The levels of soluble solids, acidity and sugars in the lemon juice decreased in the treatments that used most water. This is explained by a dilution effect.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-5036
    Keywords: almond ; leaf conductance ; leaf water potential ; water stress
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Almond plants (Amygdalus communis L. cv. Garrigues) were grown in the field under drip irrigated and non irrigated conditions. Leaf water potential (Ψ) and leaf conductance (g1) were determined at three different times of the growing season (spring, summer and autumn). The relationships between Ψ and g1 in both treatments showed a continuous decrease of g1 as Ψ decreased in spring and summer. Data from the autumn presented a threshold value of Ψ (approx. −2.7 MPa in dry treatment, and approx. −1.4 MPa in wet treatment) below which leaf conductance remained constant.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...