ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    Journal of Mathematical Physics 35 (1994), S. 1573-1596 
    ISSN: 1089-7658
    Source: AIP Digital Archive
    Topics: Mathematics , Physics
    Notes: Spinor fields are studied in infinite, topologically multiply connected Robertson–Walker cosmologies. Unitary spinor representations for the discrete covering groups of the spacelike slices are constructed. The spectral resolution of Dirac's equation is given in terms of horospherical elementary waves, on which the treatment of spin and energy is based in these cosmologies. The meaning of the energy and the particle–antiparticle concept is explained in the context of this varying cosmic background. Discrete symmetries, in particular inversions of the multiply connected spacelike slices, are studied. The violation of the unitarity of the parity operator, due to self-interference of P-reflected wave packets, is discussed. The violation of the CP and CPT invariance—already on the level of the free Dirac equation on this cosmological background—is pointed out.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    Journal of Mathematical Physics 32 (1991), S. 2571-2579 
    ISSN: 1089-7658
    Source: AIP Digital Archive
    Topics: Mathematics , Physics
    Notes: Open Robertson–Walker cosmologies of multiple spatial connectivity provide a challenging example for the possible influence of the global topological structure of space-time on the laws of microscopic motion. Free geodesic motion is investigated in such cosmologies in the context of first quantization. A unique localized wave field, a solution of the Klein–Gordon equation, is found as a consequence of the topological structure of the spacelike slices t=const of the manifold. This solution is closely related to the collection of the bounded chaotic trajectories. The link is provided by the quasi-self-similar limit set of the group of covering transformations on the boundary of the universal covering space of the spacelike sections. It is this fractal set from which the covering geodesics of the bounded trajectories emerge, its Hausdorff measure and dimension determine the localized wave field.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    Journal of Mathematical Physics 42 (2001), S. 5800-5831 
    ISSN: 1089-7658
    Source: AIP Digital Archive
    Topics: Mathematics , Physics
    Notes: Green functions (retarded, advanced, Feynman and Dyson propagators) are calculated for the electromagnetic field in Robertson–Walker cosmologies with hyperbolic 3-manifolds as spacelike slices. The starting point is the Proca equation, i.e., the Maxwell field with a finite photon mass for infrared regularization, in a static cosmology with simply connected hyperbolic 3-sections. The time and space components of the resolvent kernel are scalar and vectorial point-pair invariants, respectively, and this symmetry allows for an explicit evaluation in the spectral representation. It is found that the quantum propagators have a logarithmic infrared singularity, which drops out in the zero curvature limit. Retarded and advanced Green functions remain well defined in the limit of zero photon mass, and they admit a simple generalization, by conformal scaling, to expanding 3-spaces. In cosmologies with multiply connected hyperbolic 3-manifolds as spacelike sections, the four enumerated propagators are constructed by means of Poincaré series. The spectral decomposition of the Green functions is given in terms of Eisenstein series for a certain class of open hyperbolic 3-spaces, including those with Schottky covering groups corresponding to solid handle-bodies as spacelike slices. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    Journal of Mathematical Physics 34 (1993), S. 1022-1042 
    ISSN: 1089-7658
    Source: AIP Digital Archive
    Topics: Mathematics , Physics
    Notes: The instability of world lines in Robertson–Walker universes of negative spatial curvature is investigated. A probabilistic description of this instability, similar to the Liouville equation, is developed, but in a manifestly covariant, non-Hamiltonian form. To achieve this the concept of a horospherical geodesic flow of expanding bundles of parallel world lines is introduced. An invariant measure and a covariant evolution equation for the probability density on which this flow acts is constructed. The orthogonal surfaces to these bundles of trajectories are horospheres, closed surfaces in three-space, touching the boundary at infinity of hyperbolic space, where the flow lines emerge. These horospheres are just the wave fronts of spherical waves, which constitute a complete set of eigenfunctions of the Klein–Gordon equation. This fact suggests that the evolution of the quantum mechanical density with the classical one be compared, and asymptotic identity in the asymptotically flat region is found. This leads, furthermore, to the study of the time behavior of the dispersion of the energy and the coordinates and the energy-time uncertainty relation, and identity in the late stage of the cosmic evolution is again found. In an example it is finally demonstrated that this identity can persist in the early phase of the expansion with a rapidly varying scale factor, provided the fields are conformally coupled to the curvature.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    Journal of Mathematical Physics 34 (1993), S. 3133-3150 
    ISSN: 1089-7658
    Source: AIP Digital Archive
    Topics: Mathematics , Physics
    Notes: Maxwell's equations on a topologically nontrivial cosmological background are studied. The cosmology is locally determined by a Robertson–Walker line element, but the spacelike slices are open hyperbolic manifolds, whose topology and geometry may vary in time. In this context the spectral resolution of Maxwell's equations in terms of horospherical elementary waves generated at infinity of hyperbolic space is given. The wave fronts are orthogonal to bundles of unstable geodesic rays, and the eikonal of geometric optics appears just as the phase of the horospherical waves. This fact is used to attach to the unstable geodesic rays a quantum mechanical momentum. In doing so the quantized energy-momentum tensor of the radiation field is constructed in a geometrically and dynamically transparent way, without appealing to the intricacies of the second quantization. In particular Planck's radiation formula, and the bearing of the multiply connected topology on the fluctuations in the temperature of the background radiation is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Astrophysics and space science 271 (2000), S. 181-203 
    ISSN: 1572-946X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract A pre-relativistic cosmological approach to electromagnetism and gravitation is explored that leads to a cosmic time variation of the fundamental constants. Space itself is supposed to have physical substance, which manifests by its permeability. The scale factors of the permeability tensor induce a time variation of the fundamental constants. Atomic radii, periods, and energy levels scale in cosmic time, which results in dispersionless redshifts without invoking a space expansion. Hubble constant and deceleration parameter are reviewed in this context. The time variation of the gravitational constant at the present epoch can be expressed in terms of these quantities. This provides a completely new way to restrain the deceleration parameter from laboratory bounds on the time variation of the gravitational constant. This variation also affects the redshift dependence of angular diameters and the surface brightness, and we study in some detail the redshift scaling of the linear sizes of radio sources. The effect of the varying constants on source counts is discussed, and an estimate on the curvature radius of the hyperbolic3-space is inferred from the peak in the quasar distribution. The background radiation in this dispersionless, permeable space-time stays perfectly Planckian. Cosmic time is discussed in terms of atomic and gravitational clocks, as well as cosmological age dating, in particular how the age of the Universe relates to the age of the Galaxy in a permeable space-time.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Astrophysics and space science 259 (1998), S. 255-277 
    ISSN: 1572-946X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract An interpretation of the cosmological redshift in terms of a cosmic ether is given. We study a Robertson-Walker cosmology in which the ether is phenomenologically defined by a homogeneous and isotropic permeability tensor. The speed of light becomes so a function of cosmic time like in a dielectric medium. However, the cosmic ether is dispersion free, it does not lead to a broadening of spectral lines. Locally, in Euclidean frames, the scale factors of the permeability tensor get absorbed in the fundamental constants. Mass and charge scale with cosmic time, and so do atomic energy levels. This substantially changes the interpretation of the cosmological redshift as a Doppler shift. Photon frequencies are independent of the expansion factor; their time scaling is determined by the permeability tensor. The impact of the ether on the luminosity-distance, on the distance-redshift relation, and on galactic number counts is discussed. The Hubble constant is related to the scale factors of the metric and the permeability tensor. We study the effects of the ether at first in comoving Robertson-Walker coordinates, and then, in the context of a flat but expanding space- time, in the globally geodesic rest frames of galactic observers.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    International journal of theoretical physics 36 (1997), S. 955-977 
    ISSN: 1572-9575
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The propagation of linear gravitational waves is studied in open and multiply connected Robertson-Walker cosmologies. In order for the group velocity of the gravitational wave packets to coincide with the speed of light, the linear wave equation must be conformally coupled. This opens the possibility of using the electromagnetic formalism. The gravitational analogue to the electromagnetic field tensor is introduced, and a tensorial counterpart to Maxwell's equations on the spacelike 3-slices is derived. The energy-momentum tensor for linear gravitational waves is constructed without averaging procedures, a strictly positive energy density is obtained, and it is shown that the overall energy of a gravitational pulse scales with the inverse of the expansion factor.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Celestial mechanics and dynamical astronomy 77 (2000), S. 107-126 
    ISSN: 1572-9478
    Keywords: tachyons ; superluminal signals ; cosmic time ; causality ; Robertson-Walker cosmology ; hyperbolic space
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The causality of superluminal signal transfer in the galaxy background is scrutinized. The cosmic time of the comoving galaxy frame determines a distinguished time order for events connected by superluminal signals. Every observer can relate his rest frame to the galaxy frame, and compare so the time order of events in his proper time to the cosmic time order. In this way all observers arrive at identical conclusions on the causality of events connected by superluminal signals. The energy of tachyons (superluminal particles) is defined in the comoving galaxy frame analogous to the energy of subluminal particles. It is positive in the galaxy frame and bounded from below in the rest frames of geodesically moving observers, so that particle-tachyon interactions can be based on energy-momentum conservation. We study tachyons in a Robertson-Walker cosmology with linear expansion factor and open, negatively curved 3-space (Milne universe). This cosmology admits globally geodesic rest frames for uniformly moving observers, synchronized by Lorentz boosts. In this context we show that no signals can be sent into the past of observers. If an observer emits a tachyonic signal, then the response of a second observer can never reach him prior to the emission, i.e., no predetermination can occur. The proof is based on the positivity of tachyonic energy.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    International journal of theoretical physics 33 (1994), S. 353-377 
    ISSN: 1572-9575
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract We investigate scattering effects in open Robertson-Walker cosmologies whose spacelike slices are multiply connected hyperbolic manifolds. We work out an example in which the 3-space is infinite and has the topology of a solid torus. The world-lines in these cosmologies are unstable, and classical probability densities evolving under the horospherical geodesic flow show dispersion, as do the densities of scalar wave packets. The rate of dispersion depends crucially on the expansion factor, and we calculate the time evolution of their widths. We find that the cosmic expansion can confine dispersion: The diameter of the domain of chaoticity in the 3-manifold provides the natural, time-dependent length unit in an infinite, multiply connected universe. In a toroidal 3-space manifold this diameter is just the length of the limit cycle. On this scale we find that the densities take a finite limit width in the late stage of the expansion. In the early stage classical densities and conformally coupled fields approach likewise a finite width; nonconformally coupled fields disperse. Self-interference occurs if the dispersion on the above scale is sufficiently large, so that the wave packet can overlap with itself. Signals can be backscattered through the topology of 3-space, and we calculate their recurrence times.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...