ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-19
    Description: Thoroughly studied classic space-based gravitational-wave missions concepts such as the Laser Interferometer Space Antenna (LISA) are based on laser-interferometry techniques. Ongoing developments in atom-interferometry techniques have spurred recently proposed alternative mission concepts. These different approaches can be understood on a common footing. We present an comparative analysis of how each type of instrument responds to some of the noise sources which may limiting gravitational-wave mission concepts. Sensitivity to laser frequency instability is essentially the same for either approach. Spacecraft acceleration reference stability sensitivities are different, allowing smaller spacecraft separations in the atom interferometry approach, but acceleration noise requirements are nonetheless similar. Each approach has distinct additional measurement noise issues.
    Keywords: Instrumentation and Photography
    Type: GSFC.ABS.00201.2012 , LISA Symposium; May 21, 2012 - May 25, 2012; Paris; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-09
    Description: The Laser Interferometer Space Antenna (LISA) will open three decades of gravitational wave(GW) spectrum between 0.1 and 100 mHz, the mHz band [1]. This band is expected to be the richest part of the GW spectrum, in types of sources, numbers of sources, signal-to-noise ratios and discovery potential. When LISA opens the low-frequency window of the gravitational wave spectrum,around 2034, the surge of gravitational-wave astronomy will strongly compel a subsequent mission to further explore the frequency bands of the GW spectrum that can only be accessed from space. The 2020's is the time to start developing technology and studying mission concepts for a large-scale mission to be launched in the 2040's. The mission concept would then be proposed to Astro2030. Only space-based missions can access the GW spectrum between 108 and 1 Hz because of the Earth's seismic noise. This white paper surveys the science in this band and mission concepts that could accomplish that science. The proposed small scale activity is a technology development program that would support a range of concepts and a mission concept study to choose a specific mission concept for Astro2030. In this white paper, we will refer to a generic GW mission beyond LISA as bLISA.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN70893
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-09
    Description: Harnessing the sheer discovery potential of GW Astronomy will require bold, deliberate,and sustained efforts to train and develop the requisite workforce. The next decaderequires a strategic plan to build - from the ground up - a robust, open, andwell-connected GW Astronomy community with deep participation from traditionalastronomers, physicists, data scientists, and instrumentalists. This basic infrastructure issorely needed as an enabling foundation for research. We outline a set ofrecommendations for funding agencies, universities, and professional societies to helpbuild a thriving, diverse, and inclusive new field.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN70892
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Computer Programming and Software
    Type: GSFC.CPR.00196.2012 , GSFC.CPR.6708.2012 , LTPDA Progress Meeting; Apr 17, 2012; Trento; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-11
    Description: The requirement on laser frequency noise in the Laser Interferometer Space Antenna (LISA) depends on the velocity and our knowledge of the position of each spacecraft of the interferometer. Currently it is assumed that the lasers must have a pre-stabilized frequency stability of 30Hz/square root of Hz over LISA'S most sensitive frequency band (3 mHz - 30 mHz). The intrinsic frequency stability of even the most stable com- mercial lasers is several orders of magnitude above this level. Therefore it is necessary to stabilize the laser frequency to an ultra-stable frequency reference which meets the LISA requirements. The baseline frequency reference for the LISA lasers are high finesse optical cavities based on ULE spacers. We measured the stability of two ULE spacer cavities with respect to each other. Our current best results show a noise floor at, or below, 30 Hz/square root of Hz above 3 mHz. In this report we describe the experimental layout of the entire experiment and discuss the limiting noise sources.
    Keywords: Communications and Radar
    Type: NASA/TM-2005-212794 , Rept-2006-00387-1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: The Laser Interferometer Space Antenna (LISA) is a proposed detector of gravitational waves in the 0.1 mHz - 0.1 Hz band. LISA will measure gravitational wave strain at the 10(exp -21) level by monitoring the distance between freely-falling test masses s(exp -11) m. These distance measurements will be made using heterodyne interferometry with multiple light sources on moving platforms with changing baselines, all of which cause frequency noise to couple into the displacement measurement. I will describe how LISA interferometry mitigates the effects of laser frequency noise through active suppression and common mode rejection. Recent laboratory developments will also be discussed.
    Keywords: Lasers and Masers
    Type: 2010 American Physical Society Meeting; Feb 13, 2010 - Feb 17, 2010; Washington, D.C.; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...