ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © Inter-Research, 2006. This article is posted here by permission of Inter-Research for personal use, not for redistribution. The definitive version was published in Marine Ecology Progress Series 317 (2006): 297-310, doi:10.3354/meps317297.
    Description: The Western Antarctic Peninsula (WAP) is a biologically rich area supporting large standing stocks of krill and top predators (including whales, seals and seabirds). Physical forcing greatly affects productivity, recruitment, survival and distribution of krill in this area. In turn, such interactions are likely to affect the distribution of baleen whales. The Southern Ocean GLOBEC research program aims to explore the relationships and interactions between the environment, krill and predators around Marguerite Bay (WAP) in autumn 2001 and 2002. Bathymetric and environmental variables including acoustic backscattering as an indicator of prey abundance were used to model whale distribution patterns. We used an iterative approach employing (1) classification and regression tree (CART) models to identify oceanographic and ecological variables contributing to variability in humpback Megaptera novaeangliae and minke Balaenoptera acutorstrata whale distribution, and (2) generalized additive models (GAMs) to elucidate functional ecological relationships between these variables and whale distribution. The CART models indicated that the cetacean distribution was tightly coupled with zooplankton acoustic volume backscatter in the upper (25 to 100 m), and middle (100 to 300 m) portions of the water column. Whale distribution was also related to distance from the ice edge and bathymetric slope. The GAMs indicated a persistent, strong, positive relationship between increasing zooplankton volume and whale relative abundance. Furthermore, there was a lower limit for averaged acoustic volume backscatter of zooplankton below which the relationship between whales and prey was not significant. The GAMs also supported an annual relationship between whale distribution, distance from the ice edge and bathymetric slope, suggesting that these are important features for aggregating prey. Our results demonstrate that during the 2 yr study, whales were consistently and predictably associated with the distribution of zooplankton. Thus, humpback and minke whales may be able to locate physical features and oceanographic processes that enhance prey aggregation.
    Description: Resources for this project were provided by the National Science Foundation Office of Polar Programs grant OPP-9910307 and the International Whaling Commission. This work represents a portion of A.S.F.’s dissertation, funded by a Duke University Marine Laboratory Fellowship.
    Keywords: Whale distribution ; Zooplankton ; Ice edge ; Antarctica ; SO GLOBEC ; CART ; GAM
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...