ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2019
    Description: 〈span〉〈div〉SUMMARY〈/div〉Electrical conductivity is one of the most commonly used geophysical method for reservoir and environmental studies. Its main interest lies in its sensitivity to key properties of storage and transport in porous media. Its quantitative use therefore depends on the efficiency of the petrophysical relationship to link them. In this work, we develop a new physically based model for estimating electrical conductivity of saturated porous media. The model is derived assuming that the porous media is represented by a bundle of tortuous capillary tubes with a fractal pore-size distribution. The model is expressed in terms of the porosity, electrical conductivity of the pore liquid and the microstructural parameters of porous media. It takes into account the interface properties between minerals and pore water by introducing a surface conductivity. Expressions for the formation factor and hydraulic tortuosity are also obtained from the model derivation. The model is then successfully compared with published data and performs better than previous models. The proposed approach also permits to relate the electrical conductivity to other transport properties such as the hydraulic conductivity.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: 〈span〉〈div〉Summary〈/div〉Electrical conductivity is one of the most commonly used geophysical method for reservoir and environmental studies. Its main interest lies in its sensitivity to key properties of storage and transport in porous media. Its quantitative use therefore depends on the efficiency of the petrophysical relationship to link them. In this work, we develop a new physically based model for estimating electrical conductivity of saturated porous media. The model is derived assuming that the porous media is represented by a bundle of tortuous capillary tubes with a fractal pore-size distribution. The model is expressed in terms of the porosity, electrical conductivity of the pore liquid and the microstructural parameters of porous media. It takes into account the interface properties between minerals and pore water by introducing a surface conductivity. Expressions for the formation factor and hydraulic tortuosity are also obtained from the model derivation. The model is then successfully compared with published data and performs better than previous models. The proposed approach also permits to relate the electrical conductivity to other transport properties such as the hydraulic conductivity.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...