ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 5 (1985), S. 133-154 
    ISSN: 0271-2091
    Keywords: Thermal Convection ; Rotating Channel Flow ; Finite Difference Method ; Secondary Flows ; Rotational Instabilities ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A numerical study is conducted on the effect of sidewall heating in the pressure-driven laminar flow of an incompressible viscous fluid through a rectangular channel that is subjected to a spanwise rotation. The time-dependent Navier-Stokes equations are solved along with the conservation equations for energy and mass by a finite-difference technique. The effect of weak to moderate sidewall heating on the overall flow structure at different rotation rates is studied. It is observed that for weak sidewall heating, the secondary flow structure is quite similar to the corresponding isothermal case. However, when the sidewall heating is moderate, various types of secondary flow fields are found to occur depending on the magnitude of the rotation. The influence of rotational speed on the net heat transport for different levels of sidewall heating is also studied. It is found that when the sidewall heating is weak, the basic secondary flow structure for the non-rotating case is of a unicellular form and an increase in the rotation speed leads to an increase in the net heat transfer due mainly to the rotationally driven transport of fluid from the high temperature to the low temperature region. On the other hand, when the sidewall heating is moderate so that the basic secondary flow structure for the non-rotating case has a multicellular configuration, an increase in the rotation speed leads to a decrease in the heat transport due to the weakening of the shear layer near the hot wall.
    Additional Material: 25 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1984-01-01
    Print ISSN: 0031-9171
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1982-03-01
    Description: The nonlinear double-diffusive convection in a Boussinesq fluid with stable constant vertical solute gradient, and bound by two differentially heated rigid inclined parallel plates is considered. The analysis was carried out by a Galerkin method for the cases when the angle of inclination was 0°, - 45° and + 45° (positive angle denotes heating from below, and negative angle denotes heating from above). The counter-rotating cells predicted by the linear theory merge into single cells with the same sense of rotation within a very short period of time even under slightly supercritical conditions. This is consistent with the experimental observations. Furthermore, as observed in the experiments, the evolution of instability is more rapid when heating is from above than when heating is from below. Our results for a salt-heat system are in excellent agreement with those based on the limiting case of Lewis number 0 and Schmidt number →. © 1982, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1983-05-01
    Description: A numerical study is conducted on the pressure-driven laminar flow of an incompressible viscous fluid through a rectangular channel subjected to a spanwise rotation. The full nonlinear time-dependent Navier-Stokes equations are solved by a finite-difference technique for various rotation rates and Reynolds numbers in the laminar regime. At weak rotation rates, a double-vortex secondary flow appears in the transverse planes of the channel. For more rapid rotation rates, an instability occurs in the form of longitudinal roll cells in the interior of the channel. Further increases in the rotation rate leads to a restabilization of the flow to a Taylor—Proudman regime. It is found that the roll-cell and Taylor—Proudman regimes lead to a substantial distortion of the axial-velocity profiles. The specific numerical results obtained are shown to be in excellent agreement with previously obtained experimental measurements and theoretical predictions. © 1983, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1981-11-01
    Description: Stability of the steady motion of a fluid confined between two differentially heated rigid vertical plates is considered. When a stable, constant vertical salinity gradient is also present, the steady mean velocity in the vertical direction and the mean lateral salinity gradient are characterized by the solute Rayleigh number, Rs. Experimental investigations (Elder 1965; Hart 1970) show that when Rs = 0 the instability is induced by shear and occurs in the form of two-dimensional convection cells. However, at moderate values of Rs, these shear instabilities are replaced by double-diffusive cellular convection (Thorpe, Hutt & Soulsby 1969; Paliwal & Chen 1980 a). It is generally believed that the instability is stationary and cellular for all values of Rs (Hart 1971; Paliwal & Chen 19806). We have solved the general eigenvalue problem, and our results indicate that, during transition from the stationary shear-induced instability to stationary double-diffusive cellular convection, overstable motion occurs. Furthermore, in this transition region, over a range of moderately small values of Rs, there is no preferred wavelength at the onset of instability. © 1981, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1981-08-01
    Print ISSN: 0309-1929
    Electronic ISSN: 1029-0419
    Topics: Geosciences , Physics
    Published by Taylor & Francis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...