ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2019-06-27
    Description: Heat transfer characteristics were obtained for configurations designed to model the impingement cooled midchord region of air cooled gas turbine airfoils. The configurations tested were inline and staggered two-dimensional arrays of circular jets with ten spanwise rows of holes. The cooling air was constrained to exit in the chordwise direction along the channel formed by the jet orifice plate and the heat transfer surface. Tests were run for chordwise jet hole spacings of five, ten, and fifteen hole diameters; spanwise spacings of four, six, and eight diameters; and channel heights of one, two, three, and six diameters. Mean jet Reynolds numbers ranged from 5000 to 50,000. The thermal boundary condition at the heat transfer test surface was isothermal. Tests were run for sets of geometrically similar configurations of different sizes. Mean and chordwise resolved Nusselt numbers were determined utilizing a specially constructed test surface which was segmented in the chordwise direction.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA-CR-3217 , ERC-R-79034
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Heat transfer characteristics were measured for two dimensional arrays of jets impinging on a surface parallel to the jet orifice plate. The impinging flow was constrained to exit in a single direction along the channel formed by the jet plate and the heat transfer surface. Both mean Nusselt numbers and streamwise Nusselt number profiles are presented as a function of Reynolds number and geometric parameters. These are the streamwise and transverse hole spacings ranging from 5 to 10 and 4 to 8 jet orifice diameters, respectively; the channel height ranging from 1 to 6 diameters; and the hole pattern which includes both inline and staggered arrays. The results show that significant periodic variations occur in the streamwise Nusselt number profiles, persisting downstream for at least ten rows of jet holes. Channel height can have a significant effect on the chordwise profiles, smoothed across the periodic variations. For the smaller channel heights, Nusselt numbers first decrease and then increase downstream. Where significant differences exist, inline hole patterns provide better heat transfer than staggered ones. These and other effects of the geometric parameters are presented and discussed.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Gas turbine heat transfer 1978; Dec 10, 1978 - Dec 15, 1978; San Francisco, CA
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...