ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-072X
    Keywords: Roseobacter denitrificans ; Erythrobacter species OCh 114 ; 3,4-Dihydrospheroidenone ; Spheroidenone ; Carotenoid ; Photoreduction ; Proton nuclear magnetic resonance (1H-NMR)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Roseobacter denitrificans, previously named Erythrobacter species OCh 114, synthesized spheroidenone as a major carotenoid under aerobic dark conditions. When the dark-grown cells were subjected to illumination under anacrobic conditions, many unknown yellow pigments appeared and a considerable amount of spheroidenone disappeared. Absorption maxima of these pigments were blue-shifted from those of spheroidenone. The most abundant of the pigments was isolated, and its chemical structure was determined as 3,4-dihydrospheroidenone on spectroscopic and chemical evidence. Presumably, over-reduction of the photosynthetic apparatus interfered with normal photosynthetic electron transfer and resulted in photoreduction of C=C double bond at the 3,4-position of spheroidenone.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-072X
    Keywords: Key words Chlorobiumquinone ; Isoprenoid quinone ; Chlorosome ; Bacteriochlorophyll c ; Fluorescence ; Quenching ; Energy transfer
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The light-harvesting chlorosome antennae of anaerobic, photosynthetic green sulfur bacteria exhibit a highly redox-dependent fluorescence such that the fluorescence intensity decreases under oxidizing conditions. We found that chlorosomes from Chlorobium tepidum contain three isoprenoid quinone species (chlorobiumquinone, menaquinone-7, and an unidentified quinone that probably is a chlorobiumquinone derivative) at a total concentration of approximately 0.1 mol per mol bacteriochlorophyll c. Most of the cellular chlorobiumquinone was found in the chlorosomes and constituted about 70% of the total chlorosome quinone pool. When the quinones were added to artificial, chlorosome-like bacteriochlorophyll c aggregates in an aqueous solution, a high redox dependency of the fluorescence was observed. Chlorobiumquinones were most effective in this respect. A lesser redox dependency of the fluorescence was still observed in the absence of quinones, probably due to another unidentified redox-active component. These results suggest that quinones play a significant, but not exclusive role in controlling the fluorescence and in inhibiting energy transfer in chlorosomes under oxic conditions. Chlorosomes from Chloroflexus aurantiacus contained menaquinone in an amount similar to that of total quinone in Chlorobium tepdium chlorosomes, but did not contain chlorobiumquinones. This may explain the much lower redox-dependent fluorescence observed in Chloroflexus chlorosomes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-072X
    Keywords: Erythrobacter longus ; Photosynthetic bacterium ; Aerobic bacterium ; Carotenoid composition ; β-Carotene ; Caloxanthin ; Nostoxanthin ; Bacteriorubixanthin ; Bacteriorubixanthinal ; Spirilloxanthin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract About 20 different carotenoids were found in a strictly aerobic photosynthetic bacterium, Erythrobacter longus. All the carotenoids except the highly polar ones were identified as C40-skeletal carotenoids, which could be devided into three groups: (1) bicyclic carotenoids: β-carotene and its hydroxyl derivatives; β-cryptoxanthin, zeaxanthin, caloxanthin and nostoxanthin, (2) monocyclic carotenoids: rubixanthin, bacteriorubixanthin and bacteriorubixanthinal, which was a unique cross-conjugated carotenal, and (3) acyclic carotenoids: anhydrorhodovibrin and spirilloxanthin. Bacteriorubixanthinal and zeaxanthin were the major components. (3R)-3-Hydroxy-β-ionone has rarely been found in carotenoids of purple photosynthetic bacteria, while the acyclic carotenoids have been found exclusively in photosynthetic bacteria. Thus, this bacterium is interesting in its composition of carotenoids.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Salt adaptation in chemolithotrophic alkaliphilic sulfur-oxidizing strains belonging to genera Thioalkalimicrobium and Thioalkalivibrio has been studied by determination of salt-dependent changes in fatty acid and compatible solute composition. In both alkaliphilic groups, represented by the low salt-tolerant Thioalkalimicrobium aerophilum strain AL 3T and the extremely salt-tolerant Thioalkalivibrio versutus strain ALJ 15, unsaturated fatty acids predominate over saturated fatty acids. In strain AL 3T, C18:1, C16:0 and C16:1 were the dominant fatty acids. In strain ALJ 15, the concentrations of C18:1 and C19cyclo were salt-regulated in an inverse proportional relationship, suggesting the stimulation of cyclopropyl-synthetase activity. Squalene has been found in substantial amounts only in strain ALJ 15. Ectoine and glycine betaine were found to be the main osmolytes in Thioalkalimicrobium aerophilum and Thioalkalivibrio versutus, respectively. The production of ectoine and glycine betaine was positively correlated with the salt concentration in the growth medium. A novel type of membrane-bound yellow pigments was uniformly detected in the extremely salt-tolerant strains of Thioalkalivibrio with a backbone consisting of C15-polyene, whose specific concentration correlated with increasing salinity of the growth medium. The results suggest that the mechanisms of haloalkaliphilic adaptation in Thioalkalimicrobium sp. and Thioalkalivibrio sp. involve the production of cyclopropane fatty acids, organic compatible solutes and, possibly specific pigments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1546-1696
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: [Auszug] We have used combinatorial biosynthesis to synthesize novel lipophilic carotenoids that are powerful cellular antioxidants. By co-expressing three different carotenoid desaturases in combination with a carotenoid hydratase, a cyclase, and a hydroxylase on compatible plasmids in Escherichia coli, we ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-5079
    Keywords: Acidiphilium ; bacteriochlorophyll ; chlorophyll ; M-BChl ; nomenclature ; Zn-BChl
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A nomenclature including abbreviation for the metal-substituted (bacterio)chlorophylls active in natural photosynthesis is proposed as metal-(bacterio)chlorophyll and M-(B)Chl.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-5079
    Keywords: bacterial photosynthesis ; Light-harvesting ; carotenoids ; bacteriochlorophyll ; B800–850 ; B800–820
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The detailed effect on the light-harvesting apparatus of three different wild-type strains of Rhodopseudomonas acidophila in response to changes in both light-intensity and temperature have been investigated. In all three strains at high light-intensities (160 μmol s m2 and above) the only LH2 antenna complex synthesised is the B800–850 complex. In strains 7050 and 7750 as the light-intensity is lowered the B800–850 complex is gradually replaced by another type of LH2 the B800–820 complex. However, at no light-intensities studied is this changeover complete when the cells are grown at 30°C. If however, the light-intensity is lowered at temperatures below 25°C with strain 7750 there is a complete replacement of the B800–850 complex by the B800–820 complex. At all light-intensities and temperatures tested, strain 10050 only synthesised the B800–850 complex. Strain 7050 also responded to changes in light-intensity by altering its carotenoid composition. At high light-intensity the major carotenoids were rhodopin and rhodopin-glucoside, while at low light-intensities the major ones were rhodopinal and rhodopinal-glucoside. This change in carotenoid content started to occur at rather higher light-intensities than the switchover from B800–850 to B800–820.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-5079
    Keywords: aerobic photosynthetic bacteria ; carotenoid ; energy transfer ; Erythrobacter longus ; fluorescence excitation spectra ; resonance Raman spectra
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In vivo states and functions of carotenoids in the membranes and the isolated RC-B865 pigment-protein complexes from an aerobic photosynthetic bacterium, Erythrobacter longus, are investigated by means of fluorescence excitation and resonance Raman (RR) spectra. Erythroxanthin sulfate, a dominant carotenoid species in the membranes (〉70%), is found not to transfer the absorbed light energy to bacteriochlorophyll (Bchl), and its RR spectra are similar between the in vivo and in vitro states. These observations indicate that erythroxanthin sulfate does not interact with either Bchl or proteins in the membranes, and suggest that its function may be limited to photoprotection by quenching the harmful singlet oxygen. On the other hand, two other carotenoid species contained in the isolated RC-B865 complexes, zeaxanthin and bacteriorubixanthinal, have a high efficiency of energy transfer to Bchl (88±5%). The RR spectra of these two carotenoids, each of which can be selectively obtained by choosing the excitation wavelength, show some characteristics of interactions with proteins or Bchl.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1573-5079
    Keywords: absorption spectrum ; carotene ; carotenoid ; HPLC
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Carotenes have attracted much attention in recent years for their biological function in processes such as photosynthesis. The characterization of carotenes is difficult, however, because they consist of only carbon and hydrogen atoms, without oxygen. In the present study, we systematically examined the chemical structures of more than 30 carotenes, including most of the carotenes found in phototrophic organisms, and observed their elution order using a Novapak C18 HPLC column with simple isocratic elution. The elution order of the carotenes was C30, C40,C45 then C50. The C40 carotenes with fewer conjugated double bonds (N) had longer retention times. With respect to the end groups, the carotenes eluted in the following order: φ, Ψ, ∈ then β end groups. Furthermore, absorption spectra in the HPLC eluent used were recorded with a photodiode-array detector. A greater N value was associated with a longer absorption maximum wavelength. Since the conjugated end groups (φ and β) influenced the absorption spectra and the non-conjugated end groups (Ψ and ∈) did not, the number of conjugated end groups (zero, one and two) was clearly distinguishable. Therefore, the chemical structures of carotenes can be easily determined by a combination of the HPLC retention times and the absorption spectra.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    Biological Mass Spectrometry 28 (1993), S. 785-788 
    ISSN: 0030-493X
    Keywords: Chemistry ; Analytical Chemistry and Spectroscopy
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Field desorption (FD) mass spectrometry was applied to the determination of the molecular masses of carotenoids, natural carotenoid derivatives and their chemical derivatives. All the carotenoids examined gave the molecular ion as the base peak with negligible fragment ions. Carotenoid glucoside and its fatty acid monoester were successfully determined without acetylation, whereas carotenoic acids (carboxylate and sulphate) needed to be converted into methyl esters prior to analysis. The applicable ranges of molecular masses and polarity were very wide. In addition, carotenoid glycoside gave only [M]+· without [M + H]+· and [M + cation]+·. The numbers of carbonyl groups, primary and/or secondary hydroxyl groups and total hydroxyl groups could be directly determined according to the increase in mass units of the carotenoids after chemical reduction, acetylation and trimethylsilylation, respectively. Owing to the negligible fragment ions, FD analysis was also suitable for carotenoids containing small amounts of impurities or other carotenoids. Hence this technique is useful for determining the molecular masses of carotenoids and the number of modifiable groups in carotenoids.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...