ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2019-06-28
    Description: The flow field in a multistage compressor is three-dimensional, unsteady, and turbulent with substantial viscous effects. Some of the specific phenomena that has eluded designers include the effects of rotor-stator and rotor-rotor interactions and the physics of mixing of velocity, pressure, temperature and velocity fields. An attempt was made, to resolve experimentally, the unsteady pressure and temperature fields downstream of the second stator of a multistage axial flow compressor which will provide information on rotor-stator interaction effects and the nature of the unsteadiness in an embedded stator of a three stage axial flow compressor. Detailed area traverse measurements using pneumatic five hole probe, thermocouple probe, semi-conductor total pressure probe (Kulite) and an aspirating probe downstream of the second stator were conducted at the peak efficiency operating condition. The unsteady data was then reduced through an ensemble averaging technique which splits the signal into deterministic and unresolved components. Auto and cross correlation techniques were used to correlate the deterministic total temperature and velocity components (acquired using a slanted hot-film probe at the same measurement locations) and the gradients, distributions and relative weights of each of the terms of the average passage equation were then determined. Based on these measurements it was observed that the stator wakes, hub leakage flow region, casing endwall suction surface corner region, and the casing endwall region away from the blade surfaces were the regions of highest losses in total pressure, lowest efficiency and highest levels of unresolved unsteadiness. The deterministic unsteadiness was found to be high in the hub and casing endwall regions as well as on the pressure side of the stator wake. The spectral distribution of hot-wire and kulite voltages shows that at least eight harmonics of all three rotor blade passing frequencies are present at this measurement location. In addition to the basic three rotor blade passing frequencies (R1, R2 and R3) and their harmonics, various difference frequencies such as (2R1 -R2) and (2R3-R2) and their harmonics are also observed. These difference frequencies are due to viscous and potential interactions between rotors 1, 2 and 3 which are sensed by both the total pressure and aspirating probes at this location. Significant changes occur to the stator exit flow features with passage of the rotor upstream of the stator. Because of higher convection speeds of the rotor wake on the suction surface of the downstream stator than on the pressure side, the chopped rotor wake was found to be arriving at different times on either side of the stator wake. As the rotor passes across the stator.
    Keywords: Mechanical Engineering
    Type: NASA/CR-97-206511 , NAS 1.26:206511 , PSU-CGTP-9701
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: The results of a numerical investigation to predict the flow field including wakes and mixing in axial-flow compressor rotors are presented. The wake behavior in a moderately loaded compressor rotor is studied numerically using a 3D incompressible Navier-Stokes solver with a high Reynolds number form of a turbulence model. The equations are solved using a time dependent implicit technique. The agreement between the measured data and the predictions is good; including the blade boundary-layer profiles, wake mean-velocity profiles, and decay. The ability of the pseudocompressibility scheme to predict the entire flow field including the near and far wake profiles and its decay characteristics, effect of loading, and the viscous losses of a 3D rotor flow field are demonstrated. The mixing in the downstream regions away from the hub and annulus walls is dominated by wake diffusion. In regions away from the walls the radial mixing is predominantly caused by the transport of mass, momentum, and energy by the radial component of velocity in the wake.
    Keywords: AERODYNAMICS
    Type: ASME PAPER 91-GT-222
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: The results of a numerical investigation to predict the flow in the wake regions of compressor cascades, and wakes and mixing in rotors are presented. Attention is given to the flow in compressor cascades including the effects of change in loading (incidence) and the inlet freestream turbulence intensity. The numerical analysis shows a slight increase in the total pressure loss coefficient through the cascade with increasing turbulence levels.
    Keywords: AERODYNAMICS
    Type: ASME PAPER 91-GT-225
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...