ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1974-11-01
    Print ISSN: 0022-460X
    Electronic ISSN: 1095-8568
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-26
    Description: Developments in small supersonic aircraft design are predicted to result in low-intensity sonic booms. Booms generated by current aircraft are similar to those that led to the ban on commercial supersonic fli ght over the US, so are unsuitable for parametric studies of psychoac oustic response to low-intensity booms. Therefore, simulators have be en used to study the impact of predicted low-intensity sonic booms. H owever, simulators have been criticized because, when simulating conv entional-level booms, the sounds were observed to be unrealistic by p eople experienced in listening to sonic booms. Thus, two studies were conducted to measure the perceived realism of three sonic boom simul ators. Experienced listeners rated the realism of conventional sonic boom signatures when played in these simulators. The effects on percei ved realism of factors such as duration of post-boom noise, exclusion of very low frequency components, inclusion of ground reflections, a nd type of simulator were examined. Duration of post-boom noise was f ound to have a strong effect on perceived realism, while type of simu lator had a weak effect. It was determined that post-boom noise had t o be at least 1.5 seconds long for the sound to be rated very realist ic. Loudness level did not affect realism for the range of sounds pla yed in the tests (80-93 dB ASEL).
    Keywords: Acoustics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-31
    Description: The determination of the magnitude of sonic boom exposure which would be acceptable to the general population requires, as a starting point, a method to assess and compare individual sonic booms. There is no consensus within the scientific and regulatory communities regarding an appropriate sonic boom assessment metric. Loudness, being a fundamental and well-understood attribute of human hearing was chosen as a means of comparing sonic booms of differing shapes and amplitudes. The figure illustrates the basic steps which yield a calculated value of loudness. Based upon the aircraft configuration and its operating conditions, the sonic boom pressure signature which reaches the ground is calculated. This pressure-time history is transformed to the frequency domain and converted into a one-third octave band spectrum. The essence of the loudness method is to account for the frequency response and integration characteristics of the auditory system. The result of the calculation procedure is a numerical description (perceived level, dB) which represents the loudness of the sonic boom waveform.
    Keywords: ACOUSTICS
    Type: First Annual High-Speed Research Workshop, Part 3; p 1295-1311
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-31
    Description: The purpose of this paper is to summarize the most recent sonic boom laboratory studies performed at NASA-LaRC using the Sonic Boom Simulator. The first used synthesized idealized outdoor boom shapes which were filtered to represent booms heard inside a house. The test explored the efficacy of various metrics in assessing both loudness and annoyance responses to these booms. The second test investigated the effects of adding single reflections to idealized boom signatures, and the third compared booms recorded from real aircraft with idealized boom signatures to determine if subjects rated the real booms differently. In these studies, as in previous studies performed at NASA-LaRC, there was a continuing effort to evaluate metrics for predicting the subjective effects of sonic booms.
    Keywords: ACOUSTICS
    Type: NASA. Ames Research Center, High-Speed Research: Sonic Boom, Volume 1; p 153-175
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-08-29
    Description: A series of laboratory studies were conducted at LaRC to: (1) quantify the effects of sonic boom signature shaping on subjective loudness; (2) evaluate candidate loudness metrics; (3) quantify the effects of signature asymmetry on loudness; and (4) document sonic boom acceptability within the laboratory. A total of 212 test subjects evaluated a wide range of signatures using the NASA Langley Research Center's sonic boom simulator. Results indicated that signature shaping via front-shock minimization was particularly effective in reducing subjective loudness without requiring reductions in peak overpressure. Metric evaluations showed that A-weighted sound exposure level, Perceived Level (Stevens Mark 7), and Zwicker's Loudness level were effective descriptors of the loudness of symmetrical shaped signatures. The asymmetrical signatures were generally rated as being quieter than symmetrical signatures of equal calculated metric level. The magnitude of the loudness reductions were observed to increase as the degree of asymmetry increased and to be greatest when the rear half of the signature was loudest. This effect was not accounted for by the loudness metrics. Sonic boom acceptability criteria were determined within the laboratory. These agreed well with results previously obtained in more realistic situations.
    Keywords: ACOUSTICS
    Type: High-Speed Research: Sonic Boom, Volume 1; p 151-170
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-01-25
    Description: NASA Langley Research Center is supporting NASA High-Speed Research Program efforts to develop an updated technology base for future high-speed civil transport aircraft. Part of this effort involves (a) quantification of loudness and annoyance benefits due to sonic boom shaping and (b) determination of boom exposures acceptable to the public. Langley is conducting a series of laboratory studies to investigate in detail the subjective reactions to a wide range of shaped sonic boom signatures and to examine several metrics as estimators of sonic boom subjective effects. Results from several of these studies, as well as results obtained by other investigators, demonstrated that substantial reductions in the loudness of sonic booms can be achieved by careful shaping of the boom signatures. Recent Langley studies extended this work to include: (a) quantification of subjective effects due to booms heard indoors, (b) determination of subjective reactions due to ground-reflected booms, and (c) determination of subjective reactions to simulator reproductions of booms recently at White Sands Missile Range.
    Keywords: ACOUSTICS
    Type: (ISSN 0736-2935); : The use of EOS for
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-02
    Description: Two experiments were conducted, using sound quality engineering practices, to determine the subjective effectiveness of hypothetical active noise control systems in a range of propeller aircraft. The two tests differed by the type of judgments made by the subjects: pair comparisons in the first test and numerical category scaling in the second. Although the results of the two tests were in general agreement that the hypothetical active control measures improved the interior noise environments, the pair comparison method appears to be more sensitive to subtle changes in the characteristics of the sounds which are related to passenger preference.
    Keywords: Aircraft Propulsion and Power
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: Three experiments were conducted to determine subjective equivalence of aircraft subsonic flyover noise and sonic booms. Two of the experiments were conducted in a loudspeaker-driven sonic boom simulator, and the third in a large room containing conventional loudspeakers. The sound generation system of the boom simulator had a frequency response extending to very low frequencies (about 1 Hz) whereas the large room loudspeakers were limited to about 20 Hz. Subjective equivalence between booms and flyovers was quantified in terms of the difference between the noise level of a boom and that of a flyover when the two were judged equally annoying. Noise levels were quantified in terms of the following noise descriptors: Perceived Level (PL), Perceived Noise Level (PNL), C-weighted sound exposure level (SELC), and A-weighted sound exposure level (SELA). Results from the present study were compared, where possible, to similar results obtained in other studies. Results showed that noise level differences depended upon the descriptor used, specific boom and aircraft noise events being compared and, except for the PNL descriptor, varied between the simulator and large room. Comparison of noise level differences obtained in the present study with those of other studies indicated good agreement across studies only for the PNL and SELA descriptors. Comparison of the present results with assessments of community response to high-energy impulsive sounds made by Working Group 84 of the National Research Council's Committee on Hearing, Bioacoustics, and Biomechanics (CHABA) showed good agreement when boom/flyover noise level differences were based on SELA. However, noise level differences obtained by CHABA using SELA for aircraft flyovers and SELC for booms were not in agreement with results obtained in the present study.
    Keywords: ACOUSTICS
    Type: NASA-TM-109113 , NAS 1.15:109113
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-28
    Description: A laboratory study was conducted to determine the effects of sonic boom signature shaping on subjective loudness and acceptability. The study utilized the sonic boom simulator at the Langley Research Center. A wide range of symmetrical, front-shock-minimized signature shapes were investigated together with a limited number of asymmetrical signatures. Subjective loudness judgments were obtained from 60 test subjects by using an 11-point numerical category scale. Acceptability judgments were obtained using the method of constant stimuli. Results were used to assess the relative predictive ability of several noise metrics, determine the loudness benefits of detailed boom shaping, and derive laboratory sonic boom acceptability criteria. These results indicated that the A-weighted sound exposure level, the Stevens Mark 7 Perceived Level, and the Zwicker Loudness Level metrics all performed well. Significant reductions in loudness were obtained by increasing front-shock rise time and/or decreasing front-shock overpressure of the front-shock minimized signatures. In addition, the asymmetrical signatures were rated to be slightly quieter than the symmetrical front-shock-minimized signatures of equal A-weighted sound exposure level. However, this result was based on a limited number of asymmetric signatures. The comparison of laboratory acceptability results with acceptability data obtained in more realistic situations also indicated good agreement.
    Keywords: ACOUSTICS
    Type: NASA-TP-3269 , L-17050 , NAS 1.60:3269
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-28
    Description: A modified version of the Aircraft Noise Synthesis System with improved directivity and tonal content modeling has been developed. The synthesis system is used to provide test stimuli for studies of community annoyance to aircraft flyover noise. The computer-based system generates realistic, time-varying audio simulations of aircraft flyover noise at a specified observer location on the ground. The synthesis takes into account the time-varying aircraft position relative to the observer; specified reference spectra consisting of broadband, narrowband, and pure tone components; directivity patterns; Doppler shift; atmospheric effects; and ground effects. These parameters can be specified and controlled in such a way as to generate stimuli in which certain noise characteristics such as duration or tonal content are independently varied while the remaining characteristics such as broadband content are held constant. The modified version of the system provides improved modeling of noise directivity patterns and an increased number of pure tone components. User instructions for the modified version of the synthesis system are provided.
    Keywords: ACOUSTICS
    Type: NASA-TM-89089 , NAS 1.15:89089
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...