ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Sammlung
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2017-05-22
    Beschreibung: A new adaptive habit model (AHM) grows ice crystals through vapor deposition while evolving ice particle properties, including shape and effective density. The AHM provides an opportunity to investigate observed microphysical processes through the computation of polarimetric variables and corroboration with microphysical model output. This study is unique because the polarimetric scattering calculations are computed using predicted microphysical parameters rather than a priori assumptions that are imposed within the scattering calculations in the forward simulator, allowing for a more effective comparison to radar observations. Through the simulation of a case in the Front Range of the Rocky Mountains in Colorado using the Advanced Research version of the Weather Research and Forecasting Model, it is found that the AHM approximates ice mass, shape, cloud vertical structure, and temporal evolution as reflected through polarimetric quantities compared to observations. AHM reflectivity magnitudes are similar to those observed with radar and are an improvement over spherical ice crystal assumptions. Further analyses are completed to examine the effect of microphysical processes on the evolution of the differential reflectivity and specific differential phase, both of which are simulated using the AHM. Simulations reveal a polarimetric response to ice crystal mass, number, size, density, and aspect ratio. While results reveal the need for model improvements (e.g., parameterizations for aggregation rate), testing forward-simulated radar fields against observations is a first step in the validation of model microphysical and precipitation processes.
    Print ISSN: 0027-0644
    Digitale ISSN: 1520-0493
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2017-05-22
    Beschreibung: The bulk adaptive habit model (AHM) explicitly predicts ice particle aspect ratio, improving the representation of microphysical processes and properties, including ice–liquid-phase partitioning. With the unique ability to predict ice particle shape and density, the AHM is combined with an offline forward operator to produce fields of simulated polarimetric variables. An evaluation of AHM-forward-simulated dual-polarization radar signatures in an idealized Arctic mixed-phase cloud is presented. Interpretations of those signatures are provided through microphysical model output using the large-eddy simulation mode of the Weather Research and Forecasting Model. Vapor-grown ice properties are associated with distinct observable signatures in polarimetric radar variables, with clear sensitivities to the simulated ice particle properties, including ice number, size, and distribution shape. In contrast, the liquid droplet number has little influence on both polarimetric and microphysical variables in the case presented herein. Polarimetric quantities are sensitive to the dominating crystal habit type in a volume, with enhancements for aspect ratios much lower or higher than unity. This synthesis of a microphysical model and a polarimetric forward simulator is a first step in the evaluation of detailed AHM microphysics.
    Print ISSN: 0027-0644
    Digitale ISSN: 1520-0493
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2020-10-26
    Beschreibung: A novel methodology for modeling ice-ice aggregation is presented. This methodology combines a modified hydrodynamic collection algorithm with bulk aggregate characteristic information from an offline simulator that collects ice particles, namely, the Ice Particle and Aggregate Simulator, and has been implemented into the Adaptive Habit Microphysics scheme in the Weather Research and Forecasting Model. Aggregates, or snow, are formed via collection of cloud ice particles, where initial ice characteristics and the resulting geometry determine aggregate characteristics. Upon implementation, idealized squall-line simulations are performed to examine the new methodology in comparison with commonly used bulk microphysics schemes. It is found that the adaptive habit aggregation parameterization develops snow and reduces ice mass and number concentrations compared to other schemes. The development of aggregates through the new methodology cascades into other interesting effects, including enhancements in ice and snow growth, as well as homogeneous freezing. Further microphysical analyses reveal varying sensitivities, where snow processes are most sensitive to the new parameterization, followed by ice, then cloud, rain, and graupel processes. Further, the new scheme results in enhancements in surface precipitation due to the persistence of snow at lower altitudes. This persistence is a result of shape-dependent melting and sublimation, increasing the residence time. Moreover, these low-level enhancements are reflected in increases in radar reflectivity at the surface and its spatial distribution. Finally, the ability to predict snow shape and density allows for the simulation of polarimetric radar quantities, resulting in signature enhancements compared to schemes that do not consider spatial and temporal variations in snow shape and density.
    Print ISSN: 0022-4928
    Digitale ISSN: 1520-0469
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2019-06-01
    Beschreibung: Aggregation, the process by which two or more ice particles attach to each other, is typically observed in clouds that span a range of temperatures and is influenced by the crystal shape (habit). In this study, the resulting characteristics of ice–ice two-monomer aggregation is investigated, which is expected to improve microphysical parameterizations through more precise aggregate characteristics and in turn better predict the rate of aggregation and snow development. A systematic way to determine the aspect ratio of the aggregate was developed, which takes into account the expected falling orientations, overlap of each monomer, and any contact angle that may form through so-called constrained randomization. Distributions were used to obtain the most frequent aspect ratio, major axis, and minor axis of aggregated particles with respect to the monomer aspect ratio. Simulations were completed using the Ice Particle and Aggregate Simulator (IPAS), a model that uses predefined three-dimensional geometries, (e.g., hexagonal prisms) to simulate ice crystal aggregation and allows for variation in crystal size, shape, number, and falling orientation. In this study, after collection in a theoretical grid space, detailed information is extracted from the particles to determine the properties of aggregates. It was found that almost all monomer aspect ratios aggregate to less extreme aggregate aspect ratios at nearly the same rate. Newly formed aggregate properties are amenable to implementation into more sophisticated bulk microphysical models designed to predict and evolve particle properties, which is crucial in realistically evolving cloud ice mass distribution and for representing the collection process.
    Print ISSN: 0022-4928
    Digitale ISSN: 1520-0469
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2013-10-01
    Beschreibung: Arctic mixed-phase clouds are ubiquitous, and the persistence of supercooled liquid is not well understood. Prior studies of mixed-phase clouds predict a single axis length assuming spherical particles or mass–dimensional relationships derived from in situ data. These methods cannot mechanistically evolve particle shape, leading to inaccuracies in estimates of mixed-phase lifetime. Parts I and II of this study report on the development and parcel model testing of an adaptive habit parameterization that predicts two bulk crystal lengths. The method is implemented into a two-dimensional kinematic model in which the dynamic flow field is prescribed, allowing for sedimentation and separate advection of length mixing ratios. Similar to other studies, results show that mass–dimensional relationships produce large variation of phase, despite similar choice in particle type. Results with evolving ice habit promote phase maintenance in cases where mass–dimensional methods glaciate the layers. Adaptive habit simulations with sedimentation increase cloud lifetime at higher ice concentrations but can also lead to lower liquid amounts. Radiative cooling initially increases ice growth with a subsequent enhanced sedimentation flux, altering cloud-phase partitioning dependent on ice concentration. Surface latent and sensible heat fluxes of 50 W m−2 result in an increase in overall water mass, while compensating fluxes establish sufficient energy and mass amounts for liquid and ice maintenance. These studies provide insight into the fluxes that may be necessary for mixed-phase cloud maintenance.
    Print ISSN: 0022-4928
    Digitale ISSN: 1520-0469
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2014-10-29
    Beschreibung: A bulk microphysics scheme predicting ice particle habit evolution has been implemented in the Weather Research and Forecasting Model. Large-eddy simulations are analyzed to study the effects of ice habit and number concentration on the bulk ice and liquid masses, dynamics, and lifetime of Arctic mixed-phase boundary layer clouds. The microphysical and dynamical evolution simulated using the adaptive habit scheme is compared with that assuming spherical particles with a density of bulk ice or a reduced density and with mass–dimensional parameterizations. It is found that the adaptive habit method returns an increased (decreased) ice (liquid) mass as compared to spheres and provides a more accurate simulation as compared to dendrite mass–size relations. Using the adaptive habit method, simulations are then completed to understand the microphysical and dynamical interactions within a single-layer mixed-phase stratocumulus cloud observed during flight 31 of the Indirect and Semi-Direct Aerosol Campaign. With cloud-top longwave radiative cooling as a function of liquid mass acting as the primary dynamic driver of turbulent eddies within these clouds, the consumption of liquid at the expense of ice growth and subsequent sedimentation holds a strong control on the cloud lifetime. Ice concentrations ≥ 4 L−1 collapse the liquid layer without any external maintaining sources. Layer maintenance is possible at 4 L−1 when a constant cloud-top cooling rate or the water mass lost due to sedimentation is supplied. Larger concentrations require a more substantial source of latent or sensible heat for mixed-phase persistence.
    Print ISSN: 0022-4928
    Digitale ISSN: 1520-0469
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2011-11-15
    Print ISSN: 0148-0227
    Digitale ISSN: 2156-2202
    Thema: Geologie und Paläontologie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2019-10-23
    Beschreibung: Ice crystal habit significantly impacts ice crystal processes such as growth by vapor deposition. Despite this, most bulk microphysical models disregard this natural shape effect and assume ice to grow spherically. This paper focuses on how the evolution of ice crystal shape and choice of ice nucleation parameterization in the adaptive habit microphysics model (AHM) influence the lake-effect storm that occurred during intensive observing period 4 (IOP4) of the Ontario Winter Lake-effect Systems (OWLeS) field campaign. This localized snowstorm produced total accumulated liquid-equivalent precipitation amounts up to 17.92 mm during a 16-h time period, providing a natural laboratory to investigate the ice–liquid partitioning within the cloud, various microphysical process rates, the accumulated precipitation magnitude, and its associated spatial distribution. Two nucleation parameterizations were implemented, and aerosol data from a size-resolved advanced particle microphysics (APM) model were ingested into the AHM for use in parameterizing ice and cloud condensation nuclei. Simulations allowing ice crystals to grow nonspherically produced 1.6%–2.3% greater precipitation while altering the nucleation parameterization changed the type of accumulating hydrometeors. In addition, all simulations were highly sensitive to the domain resolution and the source of initial and boundary conditions. These findings form the foundational understanding of relationships among ice crystal habit, nucleation parameterizations, and resultant cold-season mesoscale precipitation within detailed bulk microphysical models allowing adaptive habit.
    Print ISSN: 0022-4928
    Digitale ISSN: 1520-0469
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2021-05-01
    Beschreibung: Microphysical processes within mixed-phase convective clouds can have cascading impacts on cloud properties and resultant precipitation. This paper investigates the role of microphysics in the lake-effect storm (LES) observed during intensive observing period 4 of the Ontario Winter Lake-effect Systems field campaign. A microphysical ensemble is composed of 24 simulations that differ in the microphysics scheme used (e.g., Weather Research and Forecasting Model microphysics options or a choice of two bulk adaptive habit models) along with changes in the representation of aerosol and potential ice nuclei concentrations, ice nucleation parameterizations, rain and ice fall speeds, spectral indices, ice habit assumptions, and the number of moments used for modeling ice-phase hydrometeors in each adaptive habit model. Each of these changes to microphysics resulted in varied precipitation types at the surface; 15 members forecast a mixture of snow, ice, and graupel, 7 members forecast only snow and ice, and the remaining 2 members forecast a combination of snow, ice, graupel, and rain. Observations from an optical disdrometer positioned to the south of the LES core indicate that 92% of the observed particles were snow and ice, 5% were graupel, and 3% were rain and drizzle. Analysis of observations spanning more than a point location, such as polarimetric radar observations and aircraft measurements of liquid water content, provides insight into cloud composition and processes leading to the differences at the surface. Ensemble spread is controlled by hydrometeor type differences spurred by processes or parameters (e.g., ice fall speed) that affect graupel mass.
    Print ISSN: 0022-4928
    Digitale ISSN: 1520-0469
    Thema: Geographie , Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...